้ข˜็›ฎ
้ข˜็›ฎ

MAT137Y1 LEC 20249: Calculus with Proofs (all lecture sections) Pre-Class Quiz 49 (10.2)

ๅ•้กน้€‰ๆ‹ฉ้ข˜

Let S be the solid of revolution obtained by rotating the shaded region in the figure below about the line y=-1. This region is bounded by x=5, y=0 and the curve ๐‘ฅ 2 + ๐‘ฆ 2 = 169 . Which two of the following definite integrals give the volume of S? I. โˆซ 0 12 2 ๐œ‹ ( ๐‘ฆ + 1 ) 169 โˆ’ ๐‘ฆ 2 ๐‘‘ ๐‘ฆ II. โˆซ 0 12 2 ๐œ‹ ๐‘ฆ ( 169 โˆ’ ๐‘ฆ 2 โˆ’ 5 ) ๐‘‘ ๐‘ฆ III. โˆซ 5 13 ๐œ‹ ( 2 169 โˆ’ ๐‘ฅ 2 + 169 โˆ’ ๐‘ฅ 2 ) ๐‘‘ ๐‘ฅ IV. ๐œ‹ โˆซ 5 13 ( 169 โˆ’ ๐‘ฅ 2 + 1 ) 2 ๐‘‘ ๐‘ฅ V. โˆซ 0 12 2 ๐œ‹ ( ๐‘ฆ + 1 ) ( 169 โˆ’ ๐‘ฆ 2 โˆ’ 5 ) ๐‘‘ ๐‘ฆ

้€‰้กน
A.I and IV
B.II and V
C.III and V
D.II and IV
E.I and III
้ข˜็›ฎๅ›พ็‰‡
ๆŸฅ็œ‹่งฃๆž

ๆŸฅ็œ‹่งฃๆž

ๆ ‡ๅ‡†็ญ”ๆกˆ
Please login to view
ๆ€่ทฏๅˆ†ๆž
We start by restating the scenario and listing the given options to keep the analysis clear. Question restated: The region shaded is bounded by x = 5, y = 0, and the circle x^2 + y^2 = 169. The solid S is formed by rotating this region about the horizontal line y = -1. We are asked which two definite integrals among Iโ€“V compute the volume of S. Answer options: I. โˆซ_0^{12} 2ฯ€ (y + 1) (169 โˆ’ y^2) dy II. โˆซ_0^{12} 2ฯ€ y (169 โˆ’ y^2 โˆ’ 5) dy III. โˆซ_5^{13} ฯ€ [ (2(169 โˆ’ x^2) + (169 โˆ’ x^2) ) ] dx IV. ฯ€ โˆซ_5^{13} (169 โˆ’ x^2 + 1)^2 dx V. โˆซ_0^{12} 2ฯ€ (y + 1) (169 โˆ’ y^2 โˆ’ 5) dy To analyze, pick a suitable method. The region is better handled with horizontal slices (constant y) because the axis of rotation is horizontal (y = -1). For a slice at a fixed y, the radius of rotation is the distance from y to -1, which is y + 1. The sliceโ€™s horizontal extent runs from x = 5 ......Login to view full explanation

็™ปๅฝ•ๅณๅฏๆŸฅ็œ‹ๅฎŒๆ•ด็ญ”ๆกˆ

ๆˆ‘ไปฌๆ”ถๅฝ•ไบ†ๅ…จ็ƒ่ถ…50000้“่€ƒ่ฏ•ๅŽŸ้ข˜ไธŽ่ฏฆ็ป†่งฃๆž,็Žฐๅœจ็™ปๅฝ•,็ซ‹ๅณ่Žทๅพ—็ญ”ๆกˆใ€‚

็ฑปไผผ้—ฎ้ข˜

ๆ›ดๅคš็•™ๅญฆ็”Ÿๅฎž็”จๅทฅๅ…ท

ๅŠ ๅ…ฅๆˆ‘ไปฌ๏ผŒ็ซ‹ๅณ่งฃ้” ๆตท้‡็œŸ้ข˜ ไธŽ ็‹ฌๅฎถ่งฃๆž๏ผŒ่ฎฉๅคไน ๅฟซไบบไธ€ๆญฅ๏ผ