题目
题目

BU.232.630.W4.SP25 sample_quiz_3

单项选择题

Consider the likelihood of an i.i.d. sample from a Bernoulli population with parameter p L(x1,...,xT)= T ∏ t=1pxt(1−p)1−xt. If you estimate the parameter p using a Maximum Likelihood estimator, you obtain the point estimate ˆ p = 1 T ∑ T t=1 xt, which corresponds to the sample mean. We know that for a Bernoulli random variable the expected value and the variance are 𝔼(xt)=p, 𝕍(xt)=p(1−p). Using this information, what is the variance of the estimator 𝕍( ˆ p )?

查看解析

查看解析

标准答案
Please login to view
思路分析
We start by recalling the setup: we have an i.i.d. sample from a Bernoulli(p) population, with xt ∈ {0,1} for t = 1,...,T, and the MLE for p is the sample mean ˆp = (1/T) Σ xt. First, note a useful property of independent Bernoulli trials: the sum Σ xt follows a B......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!