题目
题目
单项选择题

Using a suitable substitution, [math: ∫02x31+2x2dx] \int_{0}^{2} \frac{x^3}{\sqrt{1+2x^2}} {dx} can be expressed in terms of [math: u] as:

查看解析

查看解析

标准答案
Please login to view
思路分析
The problem asks to express the integral ∫_0^2 x^3 / √(1+2x^2) dx using a suitable substitution, in terms of a variable u. First, note that a natural substitution is u = 1 + 2x^2. Then du = 4x dx, which will help to replace x dx. We also express x^2 in terms of u: x^2 = (u - 1)/2, so x^3 dx = x^......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

Use the substitution formula to evaluate the integral. sec2 2x dx

Question texta) Choose an appropriate substitution, [math: u], to find the integral [math: ∫(10x+2)5x2+2x+7]\displaystyle\int{\left(10\,x+2\right)\,\sqrt{5\,x^2+2\,x+7}} [math: dx] . [math: u=] [input] Your last answer was interpreted as follows: [math: 5x2+2x+7] 5\,x^2+2\,x+7 The variables found in your answer were: [math: [x]] \left[ x \right] b) Find [math: dudx]\displaystyle \dfrac{du}{dx}. [math: dudx=]\displaystyle \dfrac{du}{dx}=[input] c) Hence, find the integral [math: ∫(10x+2)5x2+2x+7]\displaystyle\int{\left(10\,x+2\right)\,\sqrt{5\,x^2+2\,x+7}} [math: dx] . Note: Type [math: c] for the integral constant. [math: f(x)=][input] Check Question 19

Question texta) Choose an appropriate substitution, [math: u], to find the integral [math: ∫(15x2+5)5x3+5x+5]\displaystyle\int{\left(15\,x^2+5\right)\,\sqrt{5\,x^3+5\,x+5}} [math: dx] . [math: u=] [input] b) Find [math: dudx]\displaystyle \dfrac{du}{dx}. [math: dudx=]\displaystyle \dfrac{du}{dx}=[input] c) Hence, find the integral [math: ∫(15x2+5)5x3+5x+5]\displaystyle\int{\left(15\,x^2+5\right)\,\sqrt{5\,x^3+5\,x+5}} [math: dx] . Note: Type [math: c] for the integral constant. [math: f(x)=][input] Check Question 2

Question texta) Choose an appropriate substitution, [math: u], to find the integral [math: ∫(10x+5)5x2+5x+5]\displaystyle\int{\left(10\,x+5\right)\,\sqrt{5\,x^2+5\,x+5}} [math: dx] . [math: u=] [input] b) Find [math: dudx]\displaystyle \dfrac{du}{dx}. [math: dudx=]\displaystyle \dfrac{du}{dx}=[input] c) Hence, find the integral [math: ∫(10x+5)5x2+5x+5]\displaystyle\int{\left(10\,x+5\right)\,\sqrt{5\,x^2+5\,x+5}} [math: dx] . Note: Type [math: c] for the integral constant. [math: f(x)=][input] Check Question 19

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!