题目
MATH_1225_17255_202501 5.5 Substitution Method
单项选择题
Making the substitution , which of the following is equivalent to
查看解析
标准答案
Please login to view
思路分析
The provided item is incomplete, so a precise, step-by-step evaluation cannot be completed as written.
What is available:
- The question text mentions a substitution but the substitution itself is missing (there is a blank after 'substitution').
- The integral appears to be written as ∫ from 0 to 1 of x^2 dx (interpreting the fragment '∫ 1 0 x2dx'), but this interpretation......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
Use the substitution formula to evaluate the integral. sec2 2x dx
Question texta) Choose an appropriate substitution, [math: u], to find the integral [math: ∫(10x+2)5x2+2x+7]\displaystyle\int{\left(10\,x+2\right)\,\sqrt{5\,x^2+2\,x+7}} [math: dx] . [math: u=] [input] Your last answer was interpreted as follows: [math: 5x2+2x+7] 5\,x^2+2\,x+7 The variables found in your answer were: [math: [x]] \left[ x \right] b) Find [math: dudx]\displaystyle \dfrac{du}{dx}. [math: dudx=]\displaystyle \dfrac{du}{dx}=[input] c) Hence, find the integral [math: ∫(10x+2)5x2+2x+7]\displaystyle\int{\left(10\,x+2\right)\,\sqrt{5\,x^2+2\,x+7}} [math: dx] . Note: Type [math: c] for the integral constant. [math: f(x)=][input] Check Question 19
Question texta) Choose an appropriate substitution, [math: u], to find the integral [math: ∫(15x2+5)5x3+5x+5]\displaystyle\int{\left(15\,x^2+5\right)\,\sqrt{5\,x^3+5\,x+5}} [math: dx] . [math: u=] [input] b) Find [math: dudx]\displaystyle \dfrac{du}{dx}. [math: dudx=]\displaystyle \dfrac{du}{dx}=[input] c) Hence, find the integral [math: ∫(15x2+5)5x3+5x+5]\displaystyle\int{\left(15\,x^2+5\right)\,\sqrt{5\,x^3+5\,x+5}} [math: dx] . Note: Type [math: c] for the integral constant. [math: f(x)=][input] Check Question 2
Question texta) Choose an appropriate substitution, [math: u], to find the integral [math: ∫(10x+5)5x2+5x+5]\displaystyle\int{\left(10\,x+5\right)\,\sqrt{5\,x^2+5\,x+5}} [math: dx] . [math: u=] [input] b) Find [math: dudx]\displaystyle \dfrac{du}{dx}. [math: dudx=]\displaystyle \dfrac{du}{dx}=[input] c) Hence, find the integral [math: ∫(10x+5)5x2+5x+5]\displaystyle\int{\left(10\,x+5\right)\,\sqrt{5\,x^2+5\,x+5}} [math: dx] . Note: Type [math: c] for the integral constant. [math: f(x)=][input] Check Question 19
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!