题目
单项选择题
A graph of the function with equation [math: y=sin(x)] is transformed by- a dilation of factor 2 from the [math: y] -axis - a translation of [math: π3] \frac{ \pi }{3} units in the negative direction of the [math: x] -axis- a translation of 1 unit in the negative direction of the [math: y] -axisThe equation of the image is given by:
选项
A.A. [math: y=2sin((x+π3))+1] y=2sin( (x+ \frac{ \pi }{3} ))+1
B.B. [math: y=2sin((x+π3))−1] y=2sin( (x+ \frac{ \pi }{3} ))-1
C.C. [math: y=sin(12(x−π3))−1] y=sin( \frac{1}{2} (x- \frac{ \pi }{3} ))-1
D.D. [math: y=sin(12(x+π3))−1] y=sin( \frac{1}{2} (x+ \frac{ \pi }{3} ))-1
查看解析
标准答案
Please login to view
思路分析
We start by clearly restating the problem and the available options to ensure we follow the intended transformations correctly.
Question and options restated:
- The original graph is y = sin(x).
- Transformations applied: (1) a dilation of factor 2 from the y-axis, (2) a translation left by π/3, (3) a translation downward by 1 unit.
- The answer choices are:
A. y = 2 sin((x + π/3)) + 1
B. y = 2 sin((x + π/3)) − 1
C. y = sin(1/2 (x − π/3)) − 1
D. y = sin(1/2 (x + π/3)) − 1
Option-by-option analysis:
Option A: y = 2 sin((x + π/3)) + 1
- This option applies a vertical stretch by a factor of 2 (which matches the dilation b......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
Question textThe circular function [math: f(x)=sin(x)] has been dilated in the [math: y] axis direction by a factor [math: 3]\displaystyle {3}, translated [math: π3]\displaystyle {\frac{\pi}{3}} units in the positive direction of the [math: x] axis and translated [math: 8]\displaystyle {8} units in the negative direction of the [math: y] axis. The resulted function is [math: f(x)]=[input] Check Question 1
Question textThe circular function [math: f(x)=sin(x)] has been dilated in the [math: y] axis direction by a factor [math: 6]\displaystyle {6}, translated [math: 2π3]\displaystyle {\frac{2\,\pi}{3}} units in the positive direction of the [math: x] axis and translated [math: 6]\displaystyle {6} units in the negative direction of the [math: y] axis. The resulted function is [math: f(x)]=[input] Check Question 1
Question textThe circular function [math: f(x)=sin(x)] has been dilated in the [math: y] axis direction by a factor [math: 4]\displaystyle {4}, translated [math: π4]\displaystyle {\frac{\pi}{4}} units in the positive direction of the [math: x] axis and translated [math: 7]\displaystyle {7} units in the negative direction of the [math: y] axis. The resulted function is [math: f(x)]=[input] Check Question 1
Question textThe circular function [math: f(x)=sin(x)] has been dilated in the [math: y] axis direction by a factor [math: 4]\displaystyle {4}, translated [math: π4]\displaystyle {\frac{\pi}{4}} units in the positive direction of the [math: x] axis and translated [math: 7]\displaystyle {7} units in the negative direction of the [math: y] axis. The resulted function is [math: f(x)]=[input] Check Question 1
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!