题目
多项填空题
Question textThe definite integral\displaystyle \int_0^{\frac{\pi}{2}} \sin^4(x)\cos^3(x)\,dx can be evaluated using the trigonometric identity\sin^2(x) + \cos^2(x)=1and then use of integration by substitution. This gives\displaystyle \int_0^{\frac{\pi}{2}} \sin^4(x)\cos^3(x)\,dx = \displaystyle \int_0^1 u^a - u^b\, du where a and b are positive integers.The final solution is of the form \dfrac{2}{A} where A is an integer.Fill in the correct values for a,\,\,b and A.a = Answer 1 Question 29[input] b = Answer 2 Question 29[input] A = Answer 3 Question 29[input]
查看解析
标准答案
Please login to view
思路分析
To begin, let's restate the problem and what we are solving for. We are evaluating the definite integral ∫ from 0 to π/2 of sin^4(x) cos^3(x) dx, and after a substitution pattern the expression takes the form ∫ from 0 to 1 [u^a − u^b] du, where a and b are positive integers, and the final value is 2/A with A an integer. The task is to identify the correct a, b, and A.
A natural way to simp......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
The exact value of \( \int_{0}^{\pi }{(-2\cos} \frac{x}{3} )dx \) is:
Problem: Evaluate the integral∫cos(4x)cos(7x)dx. Step-by-step solution: a) Look at the Rule above Example 3.13 in the textbook Links to an external site. . To evaluate the integral ∫cos(7x)cos(4x)dx should we use equation (3.3), (3.4) or (3.5)? [ Select ] Equation (3.5) Equation (3.4) Equation (3.3) b) In this example, a=7 and b=4. Which of the following options is correct? [ Select ] Option I Option III Option II Option I: ∫cos(7x)cos(4x)dx=∫( 1 2 cos(3x)− 1 2 cos(11x))dx Option II: ∫cos(7x)cos(4x)dx=∫( 1 2 cos(3x)+ 1 2 cos(11x))dx Option III: ∫cos(7x)cos(4x)dx=∫( 1 2 cos(11x)+ 1 2 cos(7x))dx c) Now integrate your answer from (b). Which is the correct final answer to the problem? Option C Option A: ∫cos(7x)cos(4x)dx= 1 6 sin(3x)− 1 22 sin(11x)+C Option B: ∫cos(7x)cos(4x)dx= 1 22 sin(11x)+ 1 14 sin(7x)+C Option C: ∫cos(7x)cos(4x)dx= 1 6 sin(3x)+ 1 22 sin(11x)+C Option D: ∫cos(7x)cos(4x)dx=− 3 2 sin(3x)− 11 2 sin(11x)+C
Find the average value of the function f(x)=sin6(x)cos3(x) over interval [−π,π]
Evaluate ∫ sec 3 ( 𝜃 ) tan 5 ( 𝜃 ) 𝑑 𝜃 .
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!