题目
题目
多项填空题

Question textThe definite integral\displaystyle \int_0^{\frac{\pi}{2}} \sin^4(x)\cos^3(x)\,dx can be evaluated using the trigonometric identity\sin^2(x) + \cos^2(x)=1and then use of integration by substitution. This gives\displaystyle \int_0^{\frac{\pi}{2}} \sin^4(x)\cos^3(x)\,dx = \displaystyle \int_0^1 u^a - u^b\, du where a  and b  are positive integers.The final solution is of the form \dfrac{2}{A} where A  is an integer.Fill in the correct values for a,\,\,b and A.a = Answer 1 Question 29[input] b = Answer 2 Question 29[input] A = Answer 3 Question 29[input]

题目图片
查看解析

查看解析

标准答案
Please login to view
思路分析
To begin, let's restate the problem and what we are solving for. We are evaluating the definite integral ∫ from 0 to π/2 of sin^4(x) cos^3(x) dx, and after a substitution pattern the expression takes the form ∫ from 0 to 1 [u^a − u^b] du, where a and b are positive integers, and the final value is 2/A with A an integer. The task is to identify the correct a, b, and A. A natural way to simp......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!