题目
MAT136H5 S 2025 - All Sections 3.2 Preparation Check
多重下拉选择题
Problem: Evaluate the integral∫cos(4x)cos(7x)dx. Step-by-step solution: a) Look at the Rule above Example 3.13 in the textbook Links to an external site. . To evaluate the integral ∫cos(7x)cos(4x)dx should we use equation (3.3), (3.4) or (3.5)? [ Select ] Equation (3.5) Equation (3.4) Equation (3.3) b) In this example, a=7 and b=4. Which of the following options is correct? [ Select ] Option I Option III Option II Option I: ∫cos(7x)cos(4x)dx=∫( 1 2 cos(3x)− 1 2 cos(11x))dx Option II: ∫cos(7x)cos(4x)dx=∫( 1 2 cos(3x)+ 1 2 cos(11x))dx Option III: ∫cos(7x)cos(4x)dx=∫( 1 2 cos(11x)+ 1 2 cos(7x))dx c) Now integrate your answer from (b). Which is the correct final answer to the problem? Option C Option A: ∫cos(7x)cos(4x)dx= 1 6 sin(3x)− 1 22 sin(11x)+C Option B: ∫cos(7x)cos(4x)dx= 1 22 sin(11x)+ 1 14 sin(7x)+C Option C: ∫cos(7x)cos(4x)dx= 1 6 sin(3x)+ 1 22 sin(11x)+C Option D: ∫cos(7x)cos(4x)dx=− 3 2 sin(3x)− 11 2 sin(11x)+C
查看解析
标准答案
Please login to view
思路分析
Question restatement:
- Problem: Evaluate the integral ∫ cos(4x) cos(7x) dx. The problem is presented in parts:
a) Which equation (3.3), (3.4), or (3.5) should be used to evaluate ∫ cos(7x) cos(4x) dx?
b) In this example, a = 7 and b = 4. Which option is correct: I, II, or III? And what is the expansion for ∫ cos(7x) cos(4x) dx?
c) Now integrate the chosen expression from (b) to obtain the final answer, selecting among A, B, C, or D.
- Answer key provided: ["Equation (3.5)", "Option II", "Option C"]
- Answer options (for reference in the explanation):
a) Equation (3.5)
Equation (3.4)
Equation (3.3)
b) Option I
Option III
Option II
c) Option A
Option B
Option C
Option D
Analysis of each op......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
The exact value of \( \int_{0}^{\pi }{(-2\cos} \frac{x}{3} )dx \) is:
Question textThe definite integral\displaystyle \int_0^{\frac{\pi}{2}} \sin^4(x)\cos^3(x)\,dx can be evaluated using the trigonometric identity\sin^2(x) + \cos^2(x)=1and then use of integration by substitution. This gives\displaystyle \int_0^{\frac{\pi}{2}} \sin^4(x)\cos^3(x)\,dx = \displaystyle \int_0^1 u^a - u^b\, du where a and b are positive integers.The final solution is of the form \dfrac{2}{A} where A is an integer.Fill in the correct values for a,\,\,b and A.a = Answer 1 Question 29[input] b = Answer 2 Question 29[input] A = Answer 3 Question 29[input]
Find the average value of the function f(x)=sin6(x)cos3(x) over interval [−π,π]
Evaluate ∫ sec 3 ( 𝜃 ) tan 5 ( 𝜃 ) 𝑑 𝜃 .
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!