题目
题目

MAT136H5 S 2025 - All Sections 3.2 Preparation Check

多重下拉选择题

Problem: Evaluate the integral∫cos(4x)cos(7x)dx.  Step-by-step solution: a) Look at the Rule above Example 3.13 in the textbook Links to an external site. . To evaluate the integral  ∫cos(7x)cos(4x)dx should we use equation (3.3), (3.4) or (3.5)?  [ Select ] Equation (3.5) Equation (3.4) Equation (3.3)   b) In this example, a=7  and b=4. Which of the following options is correct? [ Select ] Option I Option III Option II Option I:  ∫cos(7x)cos(4x)dx=∫( 1 2 cos(3x)− 1 2 cos(11x))dx      Option II:  ∫cos(7x)cos(4x)dx=∫( 1 2 cos(3x)+ 1 2 cos(11x))dx     Option III:  ∫cos(7x)cos(4x)dx=∫( 1 2 cos(11x)+ 1 2 cos(7x))dx       c) Now integrate your answer from (b). Which is the correct final answer to the problem? Option C Option A: ∫cos(7x)cos(4x)dx= 1 6 sin(3x)− 1 22 sin(11x)+C   Option B: ∫cos(7x)cos(4x)dx= 1 22 sin(11x)+ 1 14 sin(7x)+C      Option C: ∫cos(7x)cos(4x)dx= 1 6 sin(3x)+ 1 22 sin(11x)+C       Option D: ∫cos(7x)cos(4x)dx=− 3 2 sin(3x)− 11 2 sin(11x)+C      

查看解析

查看解析

标准答案
Please login to view
思路分析
Question restatement: - Problem: Evaluate the integral ∫ cos(4x) cos(7x) dx. The problem is presented in parts: a) Which equation (3.3), (3.4), or (3.5) should be used to evaluate ∫ cos(7x) cos(4x) dx? b) In this example, a = 7 and b = 4. Which option is correct: I, II, or III? And what is the expansion for ∫ cos(7x) cos(4x) dx? c) Now integrate the chosen expression from (b) to obtain the final answer, selecting among A, B, C, or D. - Answer key provided: ["Equation (3.5)", "Option II", "Option C"] - Answer options (for reference in the explanation): a) Equation (3.5) Equation (3.4) Equation (3.3) b) Option I Option III Option II c) Option A Option B Option C Option D Analysis of each op......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!