题目
MAT137Y1 LEC 20249: Calculus with Proofs (all lecture sections) Pre-Class Quiz 46 (9.7,9.8 and 9.9)
单项选择题
Evaluate ∫ sec 3 ( 𝜃 ) tan 5 ( 𝜃 ) 𝑑 𝜃 .
选项
A.1
5
sec
5
(
𝜃
)
−
1
3
sec
3
(
𝜃
)
+
𝐶
B.1
7
sec
7
(
𝜃
)
−
2
5
sec
5
(
𝜃
)
+
1
3
sec
3
(
𝜃
)
+
𝐶
C.1
7
sec
7
(
𝜃
)
−
1
5
sec
5
(
𝜃
)
+
𝐶
D.1
3
sec
3
(
𝜃
)
−
1
5
sec
5
(
𝜃
)
+
𝐶
E.1
7
sec
7
(
𝜃
)
−
1
3
sec
3
(
𝜃
)
+
𝐶
查看解析
标准答案
Please login to view
思路分析
To evaluate the integral ∫ sec^3(θ) tan^5(θ) dθ, I will work by expressing everything in terms of sec(θ) and d(sec θ).
Option A: (1/5) sec^5(θ) − (1/3) sec^3(θ) + C. This attempt suggests integrating to lower powers of sec, but differentiating these terms would produce derivatives involving tan(θ) sec^3(θ) or similar forms, not matching the original integrand structure. In short, this pattern do......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
The exact value of \( \int_{0}^{\pi }{(-2\cos} \frac{x}{3} )dx \) is:
Question textThe definite integral\displaystyle \int_0^{\frac{\pi}{2}} \sin^4(x)\cos^3(x)\,dx can be evaluated using the trigonometric identity\sin^2(x) + \cos^2(x)=1and then use of integration by substitution. This gives\displaystyle \int_0^{\frac{\pi}{2}} \sin^4(x)\cos^3(x)\,dx = \displaystyle \int_0^1 u^a - u^b\, du where a and b are positive integers.The final solution is of the form \dfrac{2}{A} where A is an integer.Fill in the correct values for a,\,\,b and A.a = Answer 1 Question 29[input] b = Answer 2 Question 29[input] A = Answer 3 Question 29[input]
Problem: Evaluate the integral∫cos(4x)cos(7x)dx. Step-by-step solution: a) Look at the Rule above Example 3.13 in the textbook Links to an external site. . To evaluate the integral ∫cos(7x)cos(4x)dx should we use equation (3.3), (3.4) or (3.5)? [ Select ] Equation (3.5) Equation (3.4) Equation (3.3) b) In this example, a=7 and b=4. Which of the following options is correct? [ Select ] Option I Option III Option II Option I: ∫cos(7x)cos(4x)dx=∫( 1 2 cos(3x)− 1 2 cos(11x))dx Option II: ∫cos(7x)cos(4x)dx=∫( 1 2 cos(3x)+ 1 2 cos(11x))dx Option III: ∫cos(7x)cos(4x)dx=∫( 1 2 cos(11x)+ 1 2 cos(7x))dx c) Now integrate your answer from (b). Which is the correct final answer to the problem? Option C Option A: ∫cos(7x)cos(4x)dx= 1 6 sin(3x)− 1 22 sin(11x)+C Option B: ∫cos(7x)cos(4x)dx= 1 22 sin(11x)+ 1 14 sin(7x)+C Option C: ∫cos(7x)cos(4x)dx= 1 6 sin(3x)+ 1 22 sin(11x)+C Option D: ∫cos(7x)cos(4x)dx=− 3 2 sin(3x)− 11 2 sin(11x)+C
Find the average value of the function f(x)=sin6(x)cos3(x) over interval [−π,π]
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!