题目
题目

MAT137Y1 LEC 20249: Calculus with Proofs (all lecture sections) Pre-Class Quiz 46 (9.7,9.8 and 9.9)

单项选择题

Evaluate ∫ sec 3 ⁡ ( 𝜃 ) tan 5 ⁡ ( 𝜃 ) 𝑑 𝜃 .

选项
A.1 5 sec 5 ⁡ ( 𝜃 ) − 1 3 sec 3 ⁡ ( 𝜃 ) + 𝐶
B.1 7 sec 7 ⁡ ( 𝜃 ) − 2 5 sec 5 ⁡ ( 𝜃 ) + 1 3 sec 3 ⁡ ( 𝜃 ) + 𝐶
C.1 7 sec 7 ⁡ ( 𝜃 ) − 1 5 sec 5 ⁡ ( 𝜃 ) + 𝐶
D.1 3 sec 3 ⁡ ( 𝜃 ) − 1 5 sec 5 ⁡ ( 𝜃 ) + 𝐶
E.1 7 sec 7 ⁡ ( 𝜃 ) − 1 3 sec 3 ⁡ ( 𝜃 ) + 𝐶
查看解析

查看解析

标准答案
Please login to view
思路分析
To evaluate the integral ∫ sec^3(θ) tan^5(θ) dθ, I will work by expressing everything in terms of sec(θ) and d(sec θ). Option A: (1/5) sec^5(θ) − (1/3) sec^3(θ) + C. This attempt suggests integrating to lower powers of sec, but differentiating these terms would produce derivatives involving tan(θ) sec^3(θ) or similar forms, not matching the original integrand structure. In short, this pattern do......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

The exact value of \( \int_{0}^{\pi }{(-2\cos} \frac{x}{3} )dx \) is:

Question textThe definite integral\displaystyle \int_0^{\frac{\pi}{2}} \sin^4(x)\cos^3(x)\,dx can be evaluated using the trigonometric identity\sin^2(x) + \cos^2(x)=1and then use of integration by substitution. This gives\displaystyle \int_0^{\frac{\pi}{2}} \sin^4(x)\cos^3(x)\,dx = \displaystyle \int_0^1 u^a - u^b\, du where a  and b  are positive integers.The final solution is of the form \dfrac{2}{A} where A  is an integer.Fill in the correct values for a,\,\,b and A.a = Answer 1 Question 29[input] b = Answer 2 Question 29[input] A = Answer 3 Question 29[input]

Problem: Evaluate the integral∫cos(4x)cos(7x)dx.  Step-by-step solution: a) Look at the Rule above Example 3.13 in the textbook Links to an external site. . To evaluate the integral  ∫cos(7x)cos(4x)dx should we use equation (3.3), (3.4) or (3.5)?  [ Select ] Equation (3.5) Equation (3.4) Equation (3.3)   b) In this example, a=7  and b=4. Which of the following options is correct? [ Select ] Option I Option III Option II Option I:  ∫cos(7x)cos(4x)dx=∫( 1 2 cos(3x)− 1 2 cos(11x))dx      Option II:  ∫cos(7x)cos(4x)dx=∫( 1 2 cos(3x)+ 1 2 cos(11x))dx     Option III:  ∫cos(7x)cos(4x)dx=∫( 1 2 cos(11x)+ 1 2 cos(7x))dx       c) Now integrate your answer from (b). Which is the correct final answer to the problem? Option C Option A: ∫cos(7x)cos(4x)dx= 1 6 sin(3x)− 1 22 sin(11x)+C   Option B: ∫cos(7x)cos(4x)dx= 1 22 sin(11x)+ 1 14 sin(7x)+C      Option C: ∫cos(7x)cos(4x)dx= 1 6 sin(3x)+ 1 22 sin(11x)+C       Option D: ∫cos(7x)cos(4x)dx=− 3 2 sin(3x)− 11 2 sin(11x)+C      

Find the average value of the function f(x)=sin6(x)cos3(x) over interval [−π,π]

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!