题目
题目
单项选择题

Transitive_Clo_Alg_4 You are working with a Graph class implemented using an adjacency map, where each vertex maps to a dictionary of its neighbors. The graph is directed, and the methods get_edge(u, v) and insert_edge(u, v) are used to check for and add edges. The function TRANSITIVE_CLOSURE(graph) shown below modifies a deep copy of the input graph by potentially adding new edges based on the structure of the graph:   function TRANSITIVE_CLOSURE(graph):    closure ← deep copy of input graph     vertices ← list of vertices in closure    n ← number of vertices     for k from 0 to n-1:        for i from 0 to n-1:            if i ≠ k and edge (i, k) exists in closure:                for j from 0 to n-1:                    if i ≠ j ≠ k and edge (k, j) exists in closure:                        if edge (i, j) does not exist in closure:                            insert edge (i, j) into closure     return closure What is the time complexity of this algorithm, assuming get_edge and insert_edge each take constant time?

选项
A.O(n²)
B.O(n³)
C.O(n log n)
D.O(n² log n)
查看解析

查看解析

标准答案
Please login to view
思路分析
We are given a directed graph represented by an adjacency map, and a TRANSITIVE_CLOSURE procedure that iterates through vertices to potentially add edges. The time complexity hinges on how many times the inner operations run. Option: O(n²) This would imply only two nested levels of iteration with constant work insi......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!