้ข˜็›ฎ
้ข˜็›ฎ

FINTECH 540.01.Fa25 Final Exam

ๅ•้กน้€‰ๆ‹ฉ้ข˜

ย  What is the result of training a supervised learning model given a certain set of data ๐‘‹ and labels ๐‘ฆ ? ย  I A function f describing the mapping ๐‘“ ( ๐‘ฆ ; ๐œƒ ) = ๐‘‹ , where ๐œƒ is the set of optimized model parameters. II A function f describing the mapping ๐‘“ ( ๐‘‹ ; ๐œƒ ) = ๐‘ฆ , where ๐œƒ is the set of optimized model parameters. III A function f describing the mapping ๐‘“ ( ๐‘‹ ; ๐œƒ ) = ๐‘ฆ , where ๐œƒ is the subset of data holdout for testing. IV A function f describes the mapping ๐‘“ ( ๐‘‹ ; ๐œƒ ) = ๐‘ฆ , where ๐œƒ is the set of model parameters chosen arbitrarily by the user. ย 

ๆŸฅ็œ‹่งฃๆž

ๆŸฅ็œ‹่งฃๆž

ๆ ‡ๅ‡†็ญ”ๆกˆ
Please login to view
ๆ€่ทฏๅˆ†ๆž
We begin by restating the core question: what is the result of training a supervised learning model given data X and labels y? Option I: f(y; ฮธ) = X, where ฮธ is the set of optimized model parameters. This reverses the typical direction of the mapping. In supervised learning with inputs X and targets y, the model learns a function that takes X as input and produces y as output, not the other way around. Therefore thi......Login to view full explanation

็™ปๅฝ•ๅณๅฏๆŸฅ็œ‹ๅฎŒๆ•ด็ญ”ๆกˆ

ๆˆ‘ไปฌๆ”ถๅฝ•ไบ†ๅ…จ็ƒ่ถ…50000้“่€ƒ่ฏ•ๅŽŸ้ข˜ไธŽ่ฏฆ็ป†่งฃๆž,็Žฐๅœจ็™ปๅฝ•,็ซ‹ๅณ่Žทๅพ—็ญ”ๆกˆใ€‚

็ฑปไผผ้—ฎ้ข˜

ๆ›ดๅคš็•™ๅญฆ็”Ÿๅฎž็”จๅทฅๅ…ท

ๅŠ ๅ…ฅๆˆ‘ไปฌ๏ผŒ็ซ‹ๅณ่งฃ้” ๆตท้‡็œŸ้ข˜ ไธŽ ็‹ฌๅฎถ่งฃๆž๏ผŒ่ฎฉๅคไน ๅฟซไบบไธ€ๆญฅ๏ผ