题目
题目
单项选择题

If the function [math: f(x)=x3+4x2+4x] f(x)=x^3+4x^2+4x has a stationary point at (-2,0), the other stationary point is:

选项
A.a. [math: (13,12227)] ( \frac{1}{3} ,1\frac{22}{27} )
B.b. (2,32)
C.c. [math: (−23,−1527)] ( \frac{-2}{3} ,-1\frac{5}{27} )
D.d. [math: (−23,42027)] ( \frac{-2}{3} ,4\frac{20}{27} )
查看解析

查看解析

标准答案
Please login to view
思路分析
We start by identifying the stationary points of f(x). A stationary point occurs where f'(x) = 0. Compute f'(x): f(x) = x^3 + 4x^2 + 4x, so f'(x) = 3x^2 + 8x + 4. Solve 3x^2 + 8x + 4 = 0. The discriminant is Δ = 8^2 - 4·3·4 = 64 - 48 = 16, so the roots are x = [-8 ± √16] / (2·3) = [-8 ± 4] / 6. This gives x = (-8 + 4)/6 = -4/6 = -2/3 and x = (-8 - 4)/6 =......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!