题目
MTH1030 -1035 - S1 2025 MTH1030/35 Week 10 lesson quiz: Power series defining functions
单项选择题
Puzzle for you. Let \(s\) be a convergent series. The series consisting of the positive terms of \(s\) is \(s^+\) and the series consisting of the negative terms is \(s^-\). Which of the following statements is not always true.
选项
A.a. If both \(s^+\) and \(s^-\) diverge to infinity, then no matter what your favorite number is, \(s\) can be rearranged into a series with your favourite number as its sum.
B.b. If \(s^+\) diverges to infinity and \(s^-\) has a finite sum, then \(s\) is absolutely convergent.
C.c. If both \(s^+\) and \(s^-\) diverge to infinity, then \(s\) is conditionally convergent.
D.d. If both \(s^+\) and \(s^-\) diverge to infinity, then \(s\) can be rearranged into a series that diverges.
查看解析
标准答案
Please login to view
思路分析
We start by restating the problem and listing the options for clarity.
Question: Puzzle for you. Let s be a convergent series. The series consisting of the positive terms of s is s^+ and the series consisting of the negative terms is s^-. Which of the following statements is not always true?
Answer options:
- a. If both s^+ and s^- diverge to infinity, then no matter what your favorite number is, s can be rearranged into a series with your favourite number as its sum.
- b. If s^+ diverges to infinity and s^- has a finite sum, then s is absolutely convergent.
- c. If both s^+ and s^- diverge to infinity, then s is conditionally convergent.
- d. If both s^+ and s^- diverge to infinity, then s can be rearranged into a series that diverges.
Now, let’s analyze each option carefully, considering what each statement asserts about the positive and negative parts of a convergent series and the consequences for rearrangements and convergence.
Option a:
- Claim: If both s^+ and s^- diverge to infinity, then you can rearrange the terms of s so that the sum equals any chosen real number (your favorite number).
- What this hinges on: This resembles the Riemann rearrangement phenomenon......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
Question textFor each of the series below you find two answer fields. In the first answer field enter: (inputs are case sensitive) [table] DV | | if the series is divergent and not equal to ±∞±∞\pm\infty CV | | if the series is convergent (to a non-zero number) Z | | if the series converges to 0 INF | | if the series equals to ∞∞ \infty NIF | | if the series equals to −∞−∞ -\infty [/table] [table] WD | | if the series is not well defined | | [/table] In the second answer field select one of the following reasons that can be used to prove your claim in the first answer field: [table] DT | | The Divergency Test IT | | The Integral Test AS | | The Alternating Series Test RO | | The Root Test RA | | The Ratio Test [/table] [table] D | | The sequence of summands decreases to 00 0 L | | The limit of summands exists and equals to 00 0 C | | Comparison with a geometric series ∑∞𝑛=0𝑞𝑛∑n=0∞qn \sum_{n=0}^{\infty}q^n CH | | Comparison with the harmonic series AH | | Comparison with the alternating harmonic series [/table] [table] P | | Comparison with 𝑝pp-series, where 𝑝>1p>1p > 1 LP | | Comparison with 𝑝pp-series, where 𝑝<1p<1p < 1 [/table] [table] ∑𝑛=1∞(𝑛+1)7(8⋅𝑛!)2(2𝑛)!∑n=1∞(n+1)7(8⋅n!)2(2n)! \sum_{n=1}^\infty (n+1)^{{7}} \,\, \frac{({8}\cdot n!)^2 }{ (2n)! } | | because ∑𝑛=1∞(1−6𝑛)2𝑛2∑n=1∞(1−6n)2n2 \sum\limits_{n=1}^{\infty} \left(1- \frac{{6} }{ n } \right)^{ {2}n^2} | | because [/table]
Question textFor each of the series below you find two answer fields. In the first answer field enter: (inputs are case sensitive) [table] DV | | if the series is divergent and not equal to ±∞±∞\pm\infty CV | | if the series is convergent (to a non-zero number) Z | | if the series converges to 0 INF | | if the series equals to ∞∞ \infty NIF | | if the series equals to −∞−∞ -\infty [/table] [table] WD | | if the series is not well defined | | [/table] In the second answer field select one of the following reasons that can be used to prove your claim in the first answer field: [table] DT | | The Divergency Test IT | | The Integral Test AS | | The Alternating Series Test RO | | The Root Test RA | | The Ratio Test [/table] [table] D | | The sequence of summands decreases to 00 0 L | | The limit of summands exists and equals to 00 0 C | | Comparison with a geometric series ∑∞𝑛=0𝑞𝑛∑n=0∞qn \sum_{n=0}^{\infty}q^n CH | | Comparison with the harmonic series AH | | Comparison with the alternating harmonic series [/table] [table] P | | Comparison with 𝑝pp-series, where 𝑝>1p>1p > 1 LP | | Comparison with 𝑝pp-series, where 𝑝<1p<1p < 1 [/table] [table] ∑𝑛=1∞sin(𝜋9𝑛)∑n=1∞sin(π9n) \sum_{n=1}^\infty \sin\left( \frac{\pi }{ {9} n } \right) | | because ∑𝑛=1∞cos(𝜋10𝑛)∑n=1∞cos(π10n) \sum\limits_{n=1}^{\infty} \cos\left( \frac{\pi }{ {10} n } \right) | | because [/table]
Question textFor each of the series below you find two answer fields. In the first answer field enter: (inputs are case sensitive) [table] DV | | if the series is divergent and not equal to ±∞±∞\pm\infty CV | | if the series is convergent (to a non-zero number) Z | | if the series converges to 0 INF | | if the series equals to ∞∞ \infty NIF | | if the series equals to −∞−∞ -\infty [/table] [table] WD | | if the series is not well defined | | [/table] In the second answer field select one of the following reasons that can be used to prove your claim in the first answer field: [table] DT | | The Divergency Test IT | | The Integral Test AS | | The Alternating Series Test RO | | The Root Test RA | | The Ratio Test [/table] [table] D | | The sequence of summands decreases to 00 0 L | | The limit of summands exists and equals to 00 0 C | | Comparison with a geometric series ∑∞𝑛=0𝑞𝑛∑n=0∞qn \sum_{n=0}^{\infty}q^n CH | | Comparison with the harmonic series AH | | Comparison with the alternating harmonic series [/table] [table] P | | Comparison with 𝑝pp-series, where 𝑝>1p>1p > 1 LP | | Comparison with 𝑝pp-series, where 𝑝<1p<1p < 1 [/table] [table] ∑𝑛=1∞3𝑛3+15𝑛12+1‾‾‾‾‾‾‾√3+𝑛∑n=1∞3n3+15n12+13+n \sum_{n=1}^\infty \frac{{3}n^{3}+1}{{5}\sqrt[{3}]{ n^{12}+1}+n} | | because ∑𝑛=1∞(𝑛ln𝑛)24𝑛∑n=1∞(nlnn)24n \sum\limits_{n=1}^{\infty} \frac{(n \ln n)^{2}}{{4}^n} | | because [/table]
Question textFor each of the series below you find two answer fields. In the first answer field enter: (inputs are case sensitive) [table] DV | | if the series is divergent CV | | if the series is convergent (to a number ∉{0,1,tan(1/6)}∉{0,1,tan(1/6)}\not\in \{0, 1, \tan(1/{6}) \}) Z | | if the series converges to 0 ON | | if the series converges to 111 IN | | if the series equals to tan(1/6)tan(1/6)\tan(1/{6}) [/table] [table] WD | | if the series is not well defined | | [/table] In the second answer field select one of the following reasons that can be used to prove your claim in the first answer field: [table] DT | | The Divergency Test IT | | The Integral Test AST | | The Alternating Series Test RO | | The Root Test RA | | The Ratio Test [/table] [table] D | | The sequence of summands decreases to 00 0 L | | The limit of summands exists and equals to 00 0 C | | Comparison with a geometric series ∑∞𝑛=0𝑞𝑛∑n=0∞qn \sum_{n=0}^{\infty}q^n CH | | Comparison with the harmonic series AH | | Comparison with the alternating harmonic series [/table] [table] P | | Comparison with 𝑝pp-series, where 𝑝>1p>1p > 1 LP | | Comparison with 𝑝pp-series, where 𝑝<1p<1p < 1 [/table] [table] ∑𝑛=1∞(−1)𝑛tan(16𝑛)∑n=1∞(−1)ntan(16n) \sum\limits_{n=1}^{\infty} (-1)^n \tan \left(\frac{1}{{6} n}\right) | | because ∑𝑛=1∞(−1)𝑛(1−7𝑛)𝑛∑n=1∞(−1)n(1−7n)n\sum\limits_{n=1}^{\infty} (-1)^n \left(1-\frac{{7}}{n}\right)^n | | because [/table]
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!