题目
简答题
Here are a some sequences of numbers:a) [math: 1,−1,1/2,−1/2,1/3,−1/3,…]1, -1, 1/2, -1/2, 1/3, -1/3, \ldotsb) [math: 1,−2,3,−4,5,−6,…]1, -2, 3, -4, 5, -6, …c) [math: 0,0,0,0,0,…]0, 0, 0, 0, 0, …d) [math: 1,2,3,4,5,6,…]1, 2, 3, 4, 5, 6, …e) [math: 0+1,1+1/2,0+1/3,1+1/4,0+1/5,1+1/6,….]0+1, 1+1/2, 0+1/3, 1+1/4, 0+1/5, 1+1/6, ….How many of these sequences are divergent?
查看解析
标准答案
Please login to view
思路分析
Here is a step-by-step analysis of each sequence to determine whether it is divergent or convergent.
Option a) [1, −1, 1/2, −1/2, 1/3, −1/3, ...]
- This sequence alternates in sign and the absolute value of the terms is 1, 1, 1/2, 1/2, 1/3, 1/3, ... which decreases to 0 as the index increases. Since the terms approach 0 and the signs alternat......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
Here are a some sequences of numbers:a) \(1, -1, 1/2, -1/2, 1/3, -1/3, \ldots\)b) \(1, -2, 3, -4, 5, -6, …\)c) \(0, 0, 0, 0, 0, …\)d) \(1, 2, 3, 4, 5, 6, …\)e) \(0+1, 1+1/2, 0+1/3, 1+1/4, 0+1/5, 1+1/6, ….\)How many of these sequences are divergent?
Define a sequence of numbers like this: x1=π;xn+1=xn−(the nth digit of π)∗10−n[math]x_1=\pi; x_{n+1}=x_n-(\mbox{the nth digit of } \pi)*10^{-n}. Here the 1st digit of π[math]\pi is 1, the second 4, etc. Is this sequence convergent? If it is convergent, what is its limit? Give your answer no or enter the limit.
Let { 𝑎 𝑛 } 𝑛 = 0 ∞ be a POSITIVE sequence. Which of the following statements must be true? Select all the correct answers.
Let { 𝑎 𝑛 } 𝑛 = 0 ∞ be a sequence. Let 𝐿 ∈ 𝑅 . Which statements are equivalent to " { 𝑎 𝑛 } 𝑛 = 0 ∞ → 𝐿 " ? Select all the correct answers.
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!