题目
题目

MAT137Y1 LEC 20249: Calculus with Proofs (all lecture sections) Pre-Class Quiz 50 (11.1 and 11.2)

多项选择题

Let  { 𝑎 𝑛 } 𝑛 = 0 ∞ be a sequence. Let 𝐿 ∈ 𝑅   . Which statements are equivalent to " { 𝑎 𝑛 } 𝑛 = 0 ∞ → 𝐿 " ? Select all the correct answers.

选项
A.∀ 𝜖 ≥ 0 ,   ∃ 𝑛 0 ∈ 𝑁 ,   ∀ 𝑛 ∈ 𝑁 ,   𝑛 ≥ 𝑛 0 ⇒ | 𝑎 𝑛 − 𝐿 | < 𝜖
B.∀ 𝜖 > 0 ,   ∃ 𝑛 0 ∈ 𝑁 ,   ∀ 𝑛 ∈ 𝑁 ,   | 𝑎 𝑛 0 + 𝑛 − 𝐿 | < 𝜖
C.∀ 𝜖 > 0 ,   ∃ 𝑛 0 ∈ 𝑁 ,   ∀ 𝑛 ∈ 𝑁 ,   𝑛 ≥ 𝑛 0 ⇒ | 𝑎 𝑛 − 𝐿 | < 𝜖
D.∀ 𝜖 ≥ 0 ,   ∃ 𝑛 0 ∈ 𝑁 ,   ∀ 𝑛 ∈ 𝑁 ,   𝑛 ≥ 𝑛 0 ⇒ | 𝑎 𝑛 − 𝐿 | ≤ 𝜖
查看解析

查看解析

标准答案
Please login to view
思路分析
The question asks which statements are equivalent to the definition that the sequence a_n converges to L as n → ∞. In plain terms, this means: for every positive tolerance ε, there exists a point n0 after which all terms a_n stay within ε of L. Option 1: ∀ ε > 0, ∃ n0 ∈ N, ∀ n ∈ N, n ≥ n0 ⇒ |a_n − L| < ε. - This is exactly the standard formal definition of convergence. It says: no matter how small a positive ε you choose, you can find an index n0 after which all subsequent terms ar......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!