题目
题目

MAT137Y1 LEC 20249: Calculus with Proofs (all lecture sections) Pre-Class Quiz 40 (7.9 and 7.10)

多重下拉选择题

Consider the function f  defined by f(x)=x2  on the interval [−2,2] . Let Pn:{−2,−2+ 4 n ,−2+ 8 n ,⋯,−2+ 4n n =2}, i.e. Pn is a partition of [−2,2] by dividing it into n equal subintervals.  Therefore, Δxi= [ Select ] 2/n no enough information 4/n , i=1,2,⋯,n. If we pick x ∗ i ∈[xi−1,xi] such that x ∗ i =xi−1, then x ∗ i = [ Select ] 2(2i-2-n)/n 2(2i+n)/n 2(2i-n)/n 2(2i-2+n)/n . If we pick x ∗ i ∈[xi−1,xi] such that x ∗ i =xi, then x ∗ i = [ Select ] 2(2i+n)/n 2(2i-n)/n 2(2i-2+n)/n 2(2i-2-n)/n . Then we can write the Riemann sum of f and Pn as  S ∗ Pn (f)= n ∑ i=1f(x ∗ i )Δxi.  

查看解析

查看解析

标准答案
Please login to view
思路分析
We start by restating the scenario: f(x) = x^2 on the interval [-2, 2], and Pn is the uniform partition into n subintervals, so each subinterval has width Δx_i = (2 - (-2))/n = 4/n. Option 1 (Δx_i) asks what Δx_i equals. Since the partition is uniform, every Δx_i is the same and equal to 4/n. Therefore the correct expression for Δx_i is 4/n. The alternatives 2......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!