题目
CMPSC 132 Spring 2025 Module 4 Checkpoint
多重下拉选择题
Complete the implementation for the recursive function get_largest, that takes a list of numbers num_list and returns the largest value in the list. It does not modify num_list def get_largest(num_list): """ >>> get_largest([1,2,5,4,3]) 5 >>> get_largest([-9,7,2,4,20,1,100]) 100 >>> get_largest([-9,7,2,4,20,1]) 20 >>> get_largest([90,7,2,4,20,1]) 90 """ n = [ Select ] len(num_list) num_list[0] num_list num_list[-1] if n == 1: return [ Select ] num_list[:] num_list num_list[0] 0 else: temp = get_largest( [ Select ] num_list[:n-1] num_list[1] num_list[1:] num_list[:] ) if num_list[n-1] > [ Select ] num_list temp[1:] temp 1 : return [ Select ] num_list[1] num_list[n-1] num_list[n] num_list[0] else: return temp
查看解析
标准答案
Please login to view
思路分析
The question presents a Python function get_largest(num_list) that should return the largest value in the list without modifying num_list, and it uses a recursive approach with several placeholders to fill in.
Option analysis:
- len(num_list)
This expression would be used to set n, the length of the list, which is essential for determining the base case and the slice boundaries for the recursive step. Using len(num_list) here makes sense because you need to know how many elements are in the list to decide if you’ve reached the base case (a single-element list) and to define slices based on n. If this were something else, the subsequent indexing and slicing logic could fail or cause incorrect recursion.
- num_list[0]
In a typical recu......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
Which of the following code snippets returns the factorial of a given number? (Hint: Factorial of 5 = 5! = 1 * 2 * 3 * 4 * 5 = 120)
Which of the following code snippets returns the factorial of a given number? (Hint: Factorial of 5 = 5! = 1 * 2 * 3 * 4 * 5 = 120)
What is a base case in recursion?
What will this recursive function print when called with countdown(3)?
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!