题目
题目
单项选择题

Recr_1 What is the correct recurrence relation for the power function provided below, which calculates xn using a recursive divide-and-conquer approach?

选项
A.T(n) = \begin{cases} \Theta(1) & \text{if } n = 0 \\2T\left(n-1\right) + \Theta(1) & \text{otherwise}\end{cases}
B.T(n) = \begin{cases} \Theta(1) & \text{if } n = 0 \\T\left(\frac{n}{2}\right) + \Theta(1) & \text{otherwise}\end{cases}
C.T(n) = \begin{cases} \Theta(1) & \text{if } n = 0 \\T\left(n-1\right) + \Theta(1) & \text{otherwise}\end{cases}
D.T(n) = \begin{cases} \Theta(1) & \text{if } n = 0 \\T\left(n-1\right) + \Theta(n) & \text{otherwise}\end{cases}
E.T(n) = \begin{cases} \Theta(1) & \text{if } n = 0 \\T\left(\frac{n}{2}\right) + \Theta(n) & \text{otherwise}\end{cases}
F.T(n) = \begin{cases} \Theta(1) & \text{if } n = 0 \\2T\left(\frac{n}{2}\right) + \Theta(1) & \text{otherwise}\end{cases}
查看解析

查看解析

标准答案
Please login to view
思路分析
The problem asks for the correct recurrence relation for a power function that uses a recursive divide-and-conquer approach to compute xn. Option 1: T(n) = { Θ(1) if n = 0; 2T(n-1) + Θ(1) otherwise }. This represents a linear, unbalanced recurrence that reduces by 1 each call and multiplies the work by 2 each step, which does not reflect a divide-and-conquer scheme and would yield exponential time, not the intended logarithmic or sublinear behavior. It is therefore incorrect for a divide-and-conquer power function. Option 2: T(n) = { Θ(1) if n = 0; T(n/2) + Θ(1) otherwise }. This matches a standard......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!