题目
单项选择题
Recr_1 What is the correct recurrence relation for the power function provided below, which calculates xn using a recursive divide-and-conquer approach?
选项
A.T(n) = \begin{cases} \Theta(1) & \text{if } n = 0 \\2T\left(n-1\right) + \Theta(1) & \text{otherwise}\end{cases}
B.T(n) = \begin{cases} \Theta(1) & \text{if } n = 0 \\T\left(\frac{n}{2}\right) + \Theta(1) & \text{otherwise}\end{cases}
C.T(n) = \begin{cases} \Theta(1) & \text{if } n = 0 \\T\left(n-1\right) + \Theta(1) & \text{otherwise}\end{cases}
D.T(n) = \begin{cases} \Theta(1) & \text{if } n = 0 \\T\left(n-1\right) + \Theta(n) & \text{otherwise}\end{cases}
E.T(n) = \begin{cases} \Theta(1) & \text{if } n = 0 \\T\left(\frac{n}{2}\right) + \Theta(n) & \text{otherwise}\end{cases}
F.T(n) = \begin{cases} \Theta(1) & \text{if } n = 0 \\2T\left(\frac{n}{2}\right) + \Theta(1) & \text{otherwise}\end{cases}
查看解析
标准答案
Please login to view
思路分析
The problem asks for the correct recurrence relation for a power function that uses a recursive divide-and-conquer approach to compute xn.
Option 1: T(n) = { Θ(1) if n = 0; 2T(n-1) + Θ(1) otherwise }. This represents a linear, unbalanced recurrence that reduces by 1 each call and multiplies the work by 2 each step, which does not reflect a divide-and-conquer scheme and would yield exponential time, not the intended logarithmic or sublinear behavior. It is therefore incorrect for a divide-and-conquer power function.
Option 2: T(n) = { Θ(1) if n = 0; T(n/2) + Θ(1) otherwise }. This matches a standard......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
Recr_4 Identify the recurrence relation for the binary_search function described below, which recursively searches for a value in a sorted list.
Recr_Q_6 What is the recurrence relation for the quick_sort function given below in the average case scenario as described below?
Ms_7 Consider the recurrence relation for recursive algorithm \(T(n)\) given by: T(n) = \begin{cases} \Theta(1) & \text{if } n < 2 \\9T\left(\frac{n}{3}\right) + \Theta(n) & \text{otherwise}\end{cases} What is the run time complexity of this algorithm? The Master Theorem is provided below. Use it as you see fit:
Recr_12 Identify the recurrence relation for the function shown below.
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!