题目
题目
单项选择题

Recr_4 Identify the recurrence relation for the binary_search function described below, which recursively searches for a value in a sorted list.

选项
A.T(n) = \begin{cases} \Theta(1) & \text{if } n <2 \\2T\left(n-1\right) + \Theta(1) & \text{otherwise}\end{cases}
B.T(n) = \begin{cases} \Theta(1) & \text{if } n <2 \\T\left(n-1\right) + \Theta(n) & \text{otherwise}\end{cases}
C.T(n) = \begin{cases} \Theta(1) & \text{if } n <2 \\2T\left(\frac{n}{2}\right) + \Theta(1) & \text{otherwise}\end{cases}
D.T(n) = \begin{cases} \Theta(1) & \text{if } n <2 \\T\left(\frac{n}{2}\right) + \Theta(1) & \text{otherwise}\end{cases}
E.T(n) = \begin{cases} \Theta(1) & \text{if } n <2 \\T\left(\frac{n}{2}\right) + \Theta(n) & \text{otherwise}\end{cases}
F.T(n) = \begin{cases} \Theta(1) & \text{if } n <2 \\T\left(n-1\right) + \Theta(1) & \text{otherwise}\end{cases}
查看解析

查看解析

标准答案
Please login to view
思路分析
To begin, restate what is being asked: identify the recurrence relation for a binary_search function that recursively searches a sorted list. Option 1 evaluates the cost as 2T(n-1) + Θ(1). This would correspond to two recursive calls on size n-1, which is not how binary search operates; binary search halves the problem size, not processes two nearly full-sized subproblems. Therefore this option mischaracterizes the branching factor. Option 2 proposes T(n-1) + Θ(n). Here the non-recursive ......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!