题目
题目
单项选择题

Ms_7 Consider the recurrence relation for recursive algorithm \(T(n)\) given by: T(n) = \begin{cases} \Theta(1) & \text{if } n < 2 \\9T\left(\frac{n}{3}\right) + \Theta(n) & \text{otherwise}\end{cases} What is the run time complexity of this algorithm? The Master Theorem is provided below. Use it as you see fit:

选项
A.\( \Theta(n^2) \)
B.\( \Theta(2^n) \)
C.\( \Theta(n) \)
D.\( \Theta(\log n) \)
E.\( \Theta(n \log n) \)
查看解析

查看解析

标准答案
Please login to view
思路分析
To tackle the recurrence, I’ll compare the non-recursive work f(n) with the growth coming from the recursive term. Option 1: \(\Theta(n^2)\) - This aligns with the Master Theorem when a = 9 and b = 3, since n^{log_b a} = n^{log_3 9} = n^2. Because f(n) = \Theta(n) grows slower than n^2, the case where f(n) = O(n^{log_......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!