题目
题目
单项选择题

Ms_1 Consider the recurrence relation for an algorithm \(T(n)\) given by: \[ T(n) = \begin{cases} \Theta(1) & \text{if } n = 0 \\T\left(\frac{n}{2}\right) + \Theta(1) & \text{otherwise}\end{cases}\] The Master Theorem is provided below. Use it as you see fit:

选项
A.\( \Theta(n^2) \)
B.\( \Theta(n) \)
C.\( \Theta(n \log n) \)
D.\( \Theta(\log n) \)
查看解析

查看解析

标准答案
Please login to view
思路分析
Let’s parse the recurrence and identify the parameters for the Master Theorem. The recurrence is T(n) = T(n/2) + Theta(1) with the base case T(0) = Theta(1). Here, a = 1, b = 2, so n^{log_b a} = n^{log_2 1} = n^0 = 1. The function f(n) in the recurrence is Theta(1), which matches Theta(n^{log_b a}) since both are Theta(1). Option 1: Theta(n^2). This would correspond to a scenario where the work per level or the accumulation across levels grows qua......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!