题目
题目

MHF4U - Advanced Functions 12 (2025-26) - A

单项选择题

The graph below shows a rational function.Which of the following best describes the graph’s equation, domain, and horizontal asymptote?

选项
A.a. Equation: f(x) = \dfrac{2x + 3}{x + 2} ; Domain: \{ x \in \mathbb{R}, x \neq -2 \} ; Horizontal asymptote: y = 2 .
B.b. Equation: f(x) = \dfrac{2x - 3}{x - 2} ; Domain: \{ x \in \mathbb{R}, x \neq 2 \} ; Horizontal asymptote: y = 2 .
C.c. Equation: f(x) = \dfrac{2x + 3}{x - 2} ; Domain: \{ x \in \mathbb{R}, x \neq 2 \} ; Horizontal asymptote: y = 2 .
D.d. Equation: f(x) = \dfrac{2x + 3}{x - 2} ; Domain: \{ x \in \mathbb{R}, x \neq 2 \} ; Horizontal asymptote: y = 3 .
题目图片
查看解析

查看解析

标准答案
Please login to view
思路分析
Let me restate the problem and all answer choices to begin. Question: The graph below shows a rational function. Which of the following best describes the graph’s equation, domain, and horizontal asymptote? Answer options: - a. Equation: f(x) = \dfrac{2x + 3}{x + 2} ; Domain: \{ x \in \mathbb{R}, x \neq -2 \} ; Horizontal asymptote: y = 2 . - b. Equation: f(x) = \dfrac{2x - 3}{x - 2} ; Domain: \{ x \in \mathbb{R}, x \neq 2 \} ; Horizontal asymptote: y = 2 . - c. Equation: f(x) = \dfrac{2x + 3}{x - 2} ; Domain: \{ x \in \mathbb{R}, x \neq 2 \} ; Horizontal asymptote: y = 2 . - d. Equation: f(x) = \dfrac{2x + 3}{x - 2} ; Domain: \{ x \in \mathbb{R}, x \neq 2 \} ; Horizontal asymptote: y = 3 . Now, I will analyze each option in turn, explaining what each component means and whether it matches the graph’s features. Option a: - The equation is f(x) = (2x + 3)/(x + 2). The numerator 2x + 3 is plausible for a linearly shaped rational function, but the denominator is x + 2 rather than x − 2. This change in the vertical line where the function is undefined (a vertical asymptote) would oc......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!