题目
MATH136-1IP-IO-202430-I-81X M08: Final Exam Review Quiz
简答题
Find all of the zeros of the polynomial: 𝑥 3 − 4 𝑥 2 − 9 𝑥 + 36 = 0 When you have multiple answers separate them with a comma.
查看解析
标准答案
Please login to view
思路分析
We start by restating the task: find all zeros of the polynomial x^3 - 4x^2 - 9x + 36 = 0 and list them separated by commas.
Option A: -3,3,4. If we test these roots, we can factor the polynomial as (x + 3)(x - 3)(x - 4) or verify by expansion. Multiplying (x + 3)(x - 3) gives x^2 - 9, and then (x^2 - 9)(x - 4) expands to x^3 - 4x^2 - 9x + 36, which matches the original polynomial. The set {-3, 3, 4} is consistent with the actual zeros, and the order here is -3, 3, ......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
MTH1010_05_03_2
Find the zeros and multiplicity of the polynomial function: f(x)=x2(x−3)(x+4)f\left(x\right)=x^2\left(x-3\right)\left(x+4\right) You must enter the zeros in order of least to greatest. The multiplicity must be paired with the zero. Zero: [Fill in the blank], Multiplicity [Fill in the blank], Zero: [Fill in the blank], Multiplicity [Fill in the blank], Zero: [Fill in the blank], Multiplicity [Fill in the blank],
The graph of the function [math: f(x)] is shown here. The rule for [math: f(x)] is:
State all the x-intercepts for the function [math: y=x3−2x2−3x] y=x^3-2x^2-3x .
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!