题目
MAT137Y1 LEC 20249: Calculus with Proofs (all lecture sections) Pre-Class Quiz 47 (9.10, 9.11 and 9.12)
单项选择题
Which of the following equations describes the partial fraction decomposition of a rational function of the form 𝑥 2 + 2 𝑥 + 3 ( 𝑥 − 1 ) 2 ( 𝑥 − 2 ) ( 𝑥 2 + 4 ) ?
选项
A.𝑥
2
+
2
𝑥
+
3
(
𝑥
−
1
)
2
(
𝑥
−
2
)
(
𝑥
2
+
4
)
=
𝐴
𝑥
−
1
+
𝐵
𝑥
+
𝐶
(
𝑥
−
1
)
2
+
𝐷
𝑥
−
2
+
𝐸
𝑥
2
+
4
B.𝑥
2
+
2
𝑥
+
3
(
𝑥
−
1
)
2
(
𝑥
−
2
)
(
𝑥
2
+
4
)
=
𝐴
𝑥
−
1
+
𝐵
𝑥
(
𝑥
−
1
)
2
+
𝐶
𝑥
−
2
+
𝐷
𝑥
+
𝐸
𝑥
2
+
4
C.𝑥
2
+
2
𝑥
+
3
(
𝑥
−
1
)
2
(
𝑥
−
2
)
(
𝑥
2
+
4
)
=
𝐴
𝑥
−
1
+
𝐵
(
𝑥
−
1
)
2
+
𝐶
𝑥
−
2
+
𝐷
𝑥
𝑥
2
+
4
D.𝑥
2
+
2
𝑥
+
3
(
𝑥
−
1
)
2
(
𝑥
−
2
)
(
𝑥
2
+
4
)
=
𝐴
𝑥
−
1
+
𝐵
(
𝑥
−
1
)
2
+
𝐶
𝑥
−
2
+
𝐷
𝑥
+
𝐸
𝑥
2
+
4
E.𝑥
2
+
2
𝑥
+
3
(
𝑥
−
1
)
2
(
𝑥
−
2
)
(
𝑥
2
+
4
)
=
𝐴
𝑥
−
1
+
𝐵
(
𝑥
−
1
)
2
+
𝐶
𝑥
−
2
+
𝐷
𝑥
2
+
4
查看解析
标准答案
Please login to view
思路分析
Question restatement: Which of the following equations describes the partial fraction decomposition of a rational function of the form (x^2 + 2x + 3) / [(x - 1)^2 (x - 2) (x^2 + 4)]?
Option 1: (A)/(x - 1) + (B)/(x - 1)^2 + (C)/(x - 2) + (D x + E)/(x^2 + 4)
- Why this could be plausible: This structure matches the standard decomposition for a denominator with a repeated linear factor (x - 1)^2, another linear factor (x - 2), and an irreducible quadratic (x^2 + 4). In a typical decomposition, we expect terms for: A/(x - 1), B/(x - 1)^2, C/(x - 2), and (Dx + E)/(x^2 + 4).
- Why it might be wrong: The original option text appears to present A x − 1 and (x − 1)^2 in ways that don’t clearly align with the standard fractional form. If the numerators and structure are not clearly matching A/(x - 1), B/(x - 1)^2, C/(x - 2), and (Dx + E)/(x^2 + 4), it would ......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
In the partial fraction decomposition 2 𝑥 2 + 5 𝑥 + 9 ( 4 𝑥 + 1 ) ( 5 𝑥 2 + 1 ) = 𝐴 4 𝑥 + 1 + 𝐵 𝑥 + 𝐶 5 𝑥 2 + 1 , what are the values of 𝐴 , 𝐵 and 𝐶 ?
[math: 4x+1(x+4)2(x2+4)] \frac{4x+1}{(x+4)^2(x^2+4)} can be expressed in partial fractions as:
Calculate the integral $$\int_0^2 \dfrac{x+5}{x^2-2x-3}\, dx$$
Question textThe function f(x)=\dfrac{x+2}{(x+1)(x-1)^2} can be resolved into partial fractions of the form:\dfrac{a}{x+1} + \dfrac{b}{x-1} + \dfrac{c}{(x-1)^2}where a,\,b and c are real number values.Use this to express \displaystyle \int f(x)\,dx in the form\displaystyle \int f(x)\,dx = \dfrac{1}{A}\ln|x+1|+\dfrac{1}{B}\ln|x-1| + \dfrac{D}{2x-2}+ C.where A,\,B and D are integer values, and C is a constant of integration.Fill in the correct values for A,\,B, and D.A = Answer 1 Question 23[input] B = Answer 2 Question 23[input] D = Answer 3 Question 23[input]
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!