题目
MAT136H5 S 2025 - All Sections 3.4 Preparation Check
数值题
Suppose you want to evaluate the integral ∫ 2x−4 (x−3)(x+1) dx using the method of partial fractions. The partial fraction decomposition has the form: 2x−4 (x−3)(x+1) = A x−3 + B x+1 for some constants A and B. Find the values of the constants A and B using either the "Method of Equating Coefficients" or the "Method of Strategic Substitution" (see Example 3.29 in the textbook Links to an external site. ). What is the value of the constant B ? (Answer with a numerical value in decimal form, e.g. 0.5 rather than 1/2.)
查看解析
标准答案
Please login to view
思路分析
We are decomposing (2x - 4)/[(x - 3)(x + 1)] into A/(x - 3) + B/(x + 1).
Step 1: Write the identity by clearing denominators:
2x - 4 = A(x + 1) + B(x - 3)......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
In the partial fraction decomposition 2 𝑥 2 + 5 𝑥 + 9 ( 4 𝑥 + 1 ) ( 5 𝑥 2 + 1 ) = 𝐴 4 𝑥 + 1 + 𝐵 𝑥 + 𝐶 5 𝑥 2 + 1 , what are the values of 𝐴 , 𝐵 and 𝐶 ?
[math: 4x+1(x+4)2(x2+4)] \frac{4x+1}{(x+4)^2(x^2+4)} can be expressed in partial fractions as:
Calculate the integral $$\int_0^2 \dfrac{x+5}{x^2-2x-3}\, dx$$
Question textThe function f(x)=\dfrac{x+2}{(x+1)(x-1)^2} can be resolved into partial fractions of the form:\dfrac{a}{x+1} + \dfrac{b}{x-1} + \dfrac{c}{(x-1)^2}where a,\,b and c are real number values.Use this to express \displaystyle \int f(x)\,dx in the form\displaystyle \int f(x)\,dx = \dfrac{1}{A}\ln|x+1|+\dfrac{1}{B}\ln|x-1| + \dfrac{D}{2x-2}+ C.where A,\,B and D are integer values, and C is a constant of integration.Fill in the correct values for A,\,B, and D.A = Answer 1 Question 23[input] B = Answer 2 Question 23[input] D = Answer 3 Question 23[input]
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!