题目
BU.232.630.F3.SP25 QUIZ 1 2025
单项选择题
Consider the nonlinear model 𝑦 𝑡 = 𝜃 1 𝑥 𝑡 𝜃 2 + 𝜀 𝑡 where the sample data ( 𝑦 1 , 𝑥 1 ) , . . . , ( 𝑦 𝑇 , 𝑥 𝑇 ) are i.i.d. and 𝐸 ( 𝜀 𝑡 | 𝑥 𝑡 ) = 0 . We know that the nonlinear least square estimator is asymptotically normal, that is ⤳ 𝑇 ( 𝜃 ̂ 𝑁 𝐿 − 𝜃 0 ) ⤳ 𝑑 𝑁 ( 0 , 𝐴 0 − 1 𝛺 0 𝐴 0 − 1 ) To compute the standard errors we need to estimate 𝛺 0 , 𝛺 ̂ 0 = [ 1 𝑇 ∑ 𝑡 = 1 𝑇 𝜀 ̂ 𝑡 2 𝑥 𝑡 2 𝜃 ̂ 2 1 𝑇 ∑ 𝑡 = 1 𝑇 𝜀 ̂ 𝑡 2 𝜃 ̂ 1 𝑥 𝑡 2 𝜃 ̂ 2 log ( 𝑥 𝑡 ) 1 𝑇 ∑ 𝑡 = 1 𝑇 𝜀 ̂ 𝑡 2 𝜃 ̂ 1 𝑥 𝑡 2 𝜃 ̂ 2 log ( 𝑥 𝑡 ) ] What is the missing entry in the matrix 𝛺 ̂ 0 ?
选项
A.𝔼
(
𝜀
̂
𝑡
2
𝑥
𝑡
2
𝜃
̂
2
)
B.1
𝑇
∑
𝑡
=
1
𝑇
𝜀
̂
𝑡
2
𝜃
̂
1
2
𝑥
𝑡
2
𝜃
̂
2
log
2
(
𝑥
𝑡
)
C.𝔼
(
𝜀
̂
𝑡
2
𝜃
̂
1
𝑥
𝑡
2
𝜃
̂
2
log
(
𝑥
𝑡
)
)
D.1
𝑇
∑
𝑡
=
1
𝑇
𝜀
̂
𝑡
2
𝑥
𝑡
2
𝜃
̂
2
E.1
𝑇
∑
𝑡
=
1
𝑇
𝜀
̂
𝑡
2
𝜃
̂
1
𝑥
𝑡
2
𝜃
̂
2
log
(
𝑥
𝑡
)
F.𝔼
(
𝜀
̂
𝑡
2
𝜃
̂
1
2
𝑥
𝑡
2
𝜃
̂
2
log
2
(
𝑥
𝑡
)
)
查看解析
标准答案
Please login to view
思路分析
We begin by restating the problem setup and the options to ensure clarity for each choice.
Question: What is the missing entry in the matrix Ω̂0 for the nonlinear least squares estimator, given that the asymptotic distribution is ⤳T(θ̂N L − θ0) ⤳d N(0, A0−1 Ω0 A0−1)? The entries shown for Ω̂0 involve terms with 1/T sums of ε̂t^2, x_t^2, θ̂1, θ̂2, and log(x_t).
Answer options:
- 𝔼(ε̂t^2 x_t^2 θ̂2) // Option A
- 1/T ∑t=1^T ε̂t^2 θ̂1 2 x_t^2 θ̂2 log(x_t) // Option B
- 𝔼(ε̂t^2 θ̂1 x_t^2 θ̂2 log(x_t)) // Option C
- 1/T ∑t=1^T ε̂t^2 x_t^2 θ̂2 // Option D
- 1/T ∑t=1^T ε̂t^2 θ̂1 2 x_t^2 θ̂2 log(x_t) // Option E
- 𝔼(ε̂t^2 θ̂1 2 x_t^2 θ̂2 log^2(x_t)) // Option F
Option-by-option reasoning:
- Option A: 𝔼(ε̂t^2 x_t^2 θ̂2). This form mixes an expectation with the random quantity θ̂2 without incorporating the log(x_t) term that appears in the estimated information matrix for the nonli......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
Consider the nonlinear model yt=θ1x θ2 t +εt where the sample data (y1,x1),...,(yT,xT) are i.i.d. and E(εt|xt)=0. We know that the nonlinear least square estimator is asymptotically normal, that is √ T ( ˆ θ NL−θ0) d ⤳ N(0,A −1 0 Ω0A −1 0 ) To compute the standard errors we need to estimate A0, ˆ A 0=[ 1 T ∑ T t=1 ˆ θ 1x 2 ˆ θ 2 t log(xt) 1 T ∑ T t=1 ˆ θ 1x 2 ˆ θ 2 t log(xt) 1 T ∑ T t=1 ˆ θ 2 1 x 2 ˆ θ 2 t log2(xt)] What is the missing entry in the matrix ˆ A 0?
Consider the nonlinear model yt=θ1x θ2 t +εt where the sample data (y1,x1),...,(yT,xT) are i.i.d. and E(εt|xt)=0. We know that the nonlinear least square estimator is asymptotically normal, that is √ T ( ˆ θ NL−θ0) d ⤳ N(0,A −1 0 Ω0A −1 0 ) To compute the standard errors we need to estimate Ω0, ˆ Ω 0=[ 1 T ∑ T t=1 ˆ ε 2 t x 2 ˆ θ 2 t 1 T ∑ T t=1 ˆ ε 2 t ˆ θ 1x 2 ˆ θ 2 t log(xt) 1 T ∑ T t=1 ˆ ε 2 t ˆ θ 2 1 x 2 ˆ θ 2 t log2(xt)] What is the missing entry in the matrix ˆ Ω 0?
Consider the nonlinear model yt=θ1x θ2 t +εt where the sample data (y1,x1),...,(yT,xT) are i.i.d. and E(εt|xt)=0. We know that the nonlinear least square estimator is asymptotically normal, that is √ T ( ˆ θ NL−θ0) d ⤳ N(0,A −1 0 Ω0A −1 0 ) To compute the standard errors we need to estimate A0, ˆ A 0=[ 1 T ∑ T t=1 x 2 ˆ θ 2 t 1 T ∑ T t=1 ˆ θ 1x 2 ˆ θ 2 t log(xt) 1 T ∑ T t=1 ˆ θ 1x 2 ˆ θ 2 t log(xt) ] What is the missing entry in the matrix ˆ A 0?
Consider the nonlinear model yt=θ1x θ2 t +εt where the sample data (y1,x1),...,(yT,xT) are i.i.d. and E(εt|xt)=0. We know that the nonlinear least square estimator is asymptotically normal, that is √ T ( ˆ θ NL−θ0) d ⤳ N(0,A −1 0 Ω0A −1 0 ) To compute the standard errors we need to estimate A0, ˆ A 0=[ 1 T ∑ T t=1 ˆ θ 1x 2 ˆ θ 2 t log What is the missing entry in the matrix 𝐴 ̂ 0 ?
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!