题目
SMAT011 Weekly Quiz 4 |LA004
单项选择题
Use two iterations of Newton’s method with the initial approximation 𝑥 0 = − 3.5 to find the third approximation 𝑥 2 the equation 2 𝑥 3 + 7 𝑥 2 + 𝑥 + 8 = 0 . (Give your answer to 4 decimal places). Hints: Newton's method 𝑥 𝑛 + 1 = 𝑥 𝑛 − 𝑓 ( 𝑥 𝑛 ) 𝑓 ′ ( 𝑥 𝑛 ) .
查看解析
标准答案
Please login to view
思路分析
The question asks to use two iterations of Newton’s method with x0 = −3.5 to approximate the root of f(x) = 2x^3 + 7x^2 + x + 8, and to provide x2 to 4 decimal places.
First, set up Newton’s iteration formula: x_{n+1} = x_n − f(x_n)/f'(x_n), where f'(x) = 6x^2 + 14x + 1.
Step 1: Compute x1 f......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
Use Newton's method to approximate all the intersection points of the pair of curves. Some preliminary graphing or analysis may help in choosing good initial approximations. Round to six decimal places. y = ex and y = x2 + 5
Use Newton's method to approximate all the intersection points of the pair of curves. Some preliminary graphing or analysis may help in choosing good initial approximations. Round to six decimal places. y = ex and y = x2 + 3
Use a calculator to compute the first 10 iterations of Newton's method when applied to the function with the given initial approximation. Make a table for the values. Round to six decimal places. f(x) = 3x - cos x; x0 = 1
使用牛顿方法的两次迭代和初始近似来找到第三个近似方程。(给出你的答案 到小数点后位)。 提示:牛顿法 .
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!