题目
题目
单项选择题

Recr_Ms_1 For the best case : Identify the recurrence relation   merge_sort function described below.

选项
A.T(n) = \begin{cases} \Theta(1) & \text{if } n <2 \\T\left(n-1\right) + \Theta(1) & \text{otherwise}\end{cases}
B.T(n) = \begin{cases} \Theta(1) & \text{if } n <2 \\T\left(n-1\right) + \Theta(n) & \text{otherwise}\end{cases}
C.T(n) = \begin{cases} \Theta(1) & \text{if } n <2 \\2T\left(\frac{n}{2}\right) + \Theta(n) & \text{otherwise}\end{cases}
D.T(n) =\begin{cases}\Theta(1) & \text{if } n < 2 \\2T\left(\frac{n}{2}\right) + \Theta(n \log n) & \text{otherwise}\end{cases}
E.T(n) = \begin{cases} \Theta(1) & \text{if } n <2 \\2T\left(n-1\right) + \Theta(1) & \text{otherwise}\end{cases}
查看解析

查看解析

标准答案
Please login to view
思路分析
Question restatement: We are asked to identify the recurrence relation that describes the best-case time complexity for the described merge_sort function. Option A: T(n) = { Θ(1) if n < 2 ; T(n-1) + Θ(1) otherwise }. - This would model a process that reduces n by 1 at each step with constant work per step. It yields O(n) time, which is not consistent with the typical divide-and-conquer behavior of merge sort. Therefore this option is not appropriate for the best-case recurrence of merge......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!