题目
题目
单项选择题

Question at position 12 [1−134][025−3]=\begin{bmatrix} 1 & -1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 5 & -3 \end{bmatrix} =[−5520−6]\begin{bmatrix} -5 & 5 \\ 20 & -6 \end{bmatrix}[68−4−17]\begin{bmatrix} 6 & 8 \\ -4 & -17 \end{bmatrix}[−2838]\begin{bmatrix} -2 & 8 \\ 3 & 8 \end{bmatrix}[4−106]\begin{bmatrix} 4 & -1 \\ 0 & 6 \end{bmatrix}[0−215−12]\begin{bmatrix} 0 & -2 \\ 15 & -12 \end{bmatrix}

选项
A.[ − 5 5 20 − 6 ]
B.[ 6 8 − 4 − 17 ]
C.[ − 2 8 3 8 ]
D.[ 4 − 1 0 6 ]
E.[ 0 − 2 15 − 12 ]
查看解析

查看解析

标准答案
Please login to view
思路分析
To tackle this problem, I will restate the given sequence and then examine each candidate option in turn, explaining what each represents and why it does or does not match. - The question begins with a chain of matrix multiplications: (1 -1; 3 4) times (0 2; 5 -3) equals something. When you multiply the two 2x2 matrices, you compute each entry of the product: - Top-left entry: 1*0 + (-1)*5 = -5 - Top-right entry: 1*2 + (-1)*(-3) = 2 + 3 = 5 - Bottom-left entry: 3*0 + 4*5 = 0 + 20 = 20 - Bottom-right entry: 3*2 + 4*(-3) = 6 - 12 = -6 So the product is the 2x2 matrix [ [-5, 5], ......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!