题目
单项选择题
Let \( A = \begin{bmatrix} 2 & -1 \\ -3 & -4 \end{bmatrix}\), \( B = \begin{bmatrix} -2 & 0 \\ -1 & 3 \end{bmatrix}\).Which of the following statements is correct?
查看解析
标准答案
Please login to view
思路分析
We start by restating the problem: Given A = [[2, -1], [-3, -4]] and B = [[-2, 0], [-1, 3]], determine which statement about AB is correct. The answer provided is 'b. AB = [[-3, -3], [10, -12]]', but no other options are lis......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
Vector a = 10 12 And vector b = 2 3 Whats the value of a*b ? (* is matrix multiplication); Please enter a number with no decimals.
Question at position 13 [1−12][[4−10][23]+[1001−11]]=\begin{bmatrix} 1 & -1 & 2 \\ \end{bmatrix} \left[ \begin{bmatrix} 4 \\ -1\\ 0 \end{bmatrix} \begin{bmatrix} 2 &3 \\ \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \end{bmatrix} \right] =[2−34810]\begin{bmatrix} 2 & -3 \\ 4 & 8 \\ 1 & 0 \end{bmatrix}none of the above[29−3]\begin{bmatrix} 2 & 9 & -3 \\ \end{bmatrix}[5−7]\begin{bmatrix} 5 \\ -7 \end{bmatrix}[912]\begin{bmatrix} 9 & 12 \\ \end{bmatrix}
Question at position 12 [1−134][025−3]=\begin{bmatrix} 1 & -1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 5 & -3 \end{bmatrix} =[−5520−6]\begin{bmatrix} -5 & 5 \\ 20 & -6 \end{bmatrix}[68−4−17]\begin{bmatrix} 6 & 8 \\ -4 & -17 \end{bmatrix}[−2838]\begin{bmatrix} -2 & 8 \\ 3 & 8 \end{bmatrix}[4−106]\begin{bmatrix} 4 & -1 \\ 0 & 6 \end{bmatrix}[0−215−12]\begin{bmatrix} 0 & -2 \\ 15 & -12 \end{bmatrix}
Define the matrices A=\left[\begin{array}{ccc} 2&3\\ {1}&{-5}\end{array}\right] and B=\left[\begin{array}{ccc} 4&3&6\\ {1}&2.8&3\end{array}\right]. What is the entry in the first row and second column of AB?
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!