题目
MCD1550 / MCD2140 - T1 - 2025 TEST 2 (Week 6)
单项选择题
\(U = \left[ {\begin{array}{*{20}{c}}1&1&0\\2&3&4\end{array}} \right]\,\,\;\quad V = \left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\,\,\;\quad W = \left[ {\begin{array}{*{20}{c}}{0.6}&{0.5}\\{0.4}&{0.5}\end{array}} \right]\;\,\,\;X = \left[ {\begin{array}{*{20}{c}}3&5\\4&6\end{array}} \right]\quad \,\, \\ Y = \left[ {\begin{array}{*{20}{c}}1&3&2\\0&5&6\\0&0&1\end{array}} \right]\;\quad \) X –1 =
查看解析
标准答案
Please login to view
思路分析
The problem asks for X^{-1}, i.e., the inverse of the 2x2 matrix X.
First, identify X: X = [ [3, 5], [4, 6] ].
For a 2x2 matrix [ [a, b], [c, d] ], the inverse exists if det(X) = ad - bc ≠ 0, and is given by (......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
Let \[ \mathbf {X’X=}\begin {pmatrix} 4 & 2 & 1 \\ 2 & 2 & 0 \\ 1 & 0 & 1 \end {pmatrix}.\]Which one of the following matrices is \((\mathbf {X}’\mathbf {X})^{-1}\)? (Hint: You do not need to know how to calculate an inverse of a matrix, you only need to check which of the following satisfies the definition of an inverse.)
Let \( A = \begin{bmatrix} 2 & -1 \\ -3 & -4 \end{bmatrix}\).Which of the following statements is correct?
Let \( A = \begin{bmatrix} 2 & -1 \\ -3 & -4 \end{bmatrix}\).Which of the following statements is correct?
The inverse of the matrix ( 1 0 1 4 2 0 𝑎 0 𝑎 2 ) is ( − 1 0 0.5 2 0.5 − 1 𝑎 2 0 − 0.5 ) . What is 𝑎 ?
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!