题目
ENG1005 - MUM S2 2025 Practice Exam
多项填空题
Question texta) The Maclaurin series of [math: ex2]e^{x^2} is [math: ex2=]e^{x^2} =Answer 1 Question 9[input] [math: +] Answer 2 Question 9[input][math: x] [math: +] Answer 3 Question 9[input][math: x2]x^2 [math: +] Answer 4 Question 9[input][math: x3]x^3 [math: +…]+\ldotsb) The Maclaurin series of [math: ∫0x6ln(1+t)sin(t)dt]\int_0^x 6\ln(1+t)\sin(t) dt is [math: ∫0x6ln(1+t)sin(t)dt=]\int_0^x 6\ln(1+t)\sin(t) dt =Answer 5 Question 9[input] [math: +] Answer 6 Question 9[input][math: x] [math: +] Answer 7 Question 9[input][math: x2]x^2 [math: +] Answer 8 Question 9[input][math: x3]x^3 [math: +…]+\ldots

查看解析
标准答案
Please login to view
思路分析
The task contains two separate parts (a and b) with multiple blanks to fill in the Maclaurin (Taylor at 0) series coefficients.
Part a) The Maclaurin series of e^{x^2} is asked. To analyze the options:
- The function e^{x^2} is the exponential of x^2. Its Taylor expansion around x=0 only contains even powers of x, since e^{t} = 1 + t + t^2/2! + t^3/3! + ... and substituting t = x^2 yields terms x^{2k} for k=0,1,2,... . Therefore, the coefficient of x^1 (the x-term) must be 0, because there is no x^1 term in the series. This means the place where you would write the coefficient for x^1 should reflect a value of 0.
- The constant term (x^0) is e^{0} = 1, so the coefficient of x^0 is 1.
- The x^2 term comes from the k=1 term: (x^2)/1!, g......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
Question text 9Marks a) The Maclaurin series of [math: f(x)=2cos(x)]f(x) = 2\cos(x) is [math: f(x)=]Answer 1[input][math: +]Answer 2[input][math: x+]Answer 3[input][math: x2+⋯]x^2+\cdotsb) The Maclaurin series of [math: g(x)=6ln(1−x)]g(x) = 6\ln(1-x) is [math: g(x)=]Answer 4[input][math: +]Answer 5[input][math: x+]Answer 6[input][math: x2+⋯]x^2+\cdotsc) The Maclaurin series of [math: h(x)=2cos(3x)+6ln(1−x2)]h(x) = 2\cos(3x) + 6\ln(1-x^2) is[math: h(x)=]Answer 7[input][math: +]Answer 8[input][math: x+]Answer 9[input][math: x2+⋯]x^2+\cdotsPlease answer all parts of the question.Notes Report question issue Question 7 Notes
Question text 9Marks a) The Maclaurin series of [math: f(x)=2cos(x)]f(x) = 2\cos(x) is [math: f(x)=]Answer 1[input][math: +]Answer 2[input][math: x+]Answer 3[input][math: x2+⋯]x^2+\cdotsb) The Maclaurin series of [math: g(x)=6ln(1−x)]g(x) = 6\ln(1-x) is [math: g(x)=]Answer 4[input][math: +]Answer 5[input][math: x+]Answer 6[input][math: x2+⋯]x^2+\cdotsc) The Maclaurin series of [math: h(x)=2cos(3x)+6ln(1−x2)]h(x) = 2\cos(3x) + 6\ln(1-x^2) is[math: h(x)=]Answer 7[input][math: +]Answer 8[input][math: x+]Answer 9[input][math: x2+⋯]x^2+\cdotsNotes Report question issue Question 7 Notes
Question texta) The Maclaurin series of [math: ex2]e^{x^2} is [math: ex2=]e^{x^2} =Answer 1 Question 9[input] [math: +] Answer 2 Question 9[input][math: x] [math: +] Answer 3 Question 9[input][math: x2]x^2 [math: +] Answer 4 Question 9[input][math: x3]x^3 [math: +…]+\ldotsb) The Maclaurin series of [math: ∫0x6ln(1+t)sin(t)dt]\int_0^x 6\ln(1+t)\sin(t) dt is [math: ∫0x6ln(1+t)sin(t)dt=]\int_0^x 6\ln(1+t)\sin(t) dt =Answer 5 Question 9[input] [math: +] Answer 6 Question 9[input][math: x] [math: +] Answer 7 Question 9[input][math: x2]x^2 [math: +] Answer 8 Question 9[input][math: x3]x^3 [math: +…]+\ldotsPlease answer all parts of the question.
What are the constants in the first four terms of the Maclaurin series of \(\cos(x^2)\)? Input in the form \((a_0,a_1,a_2,a_3)\).
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!