题目
题目

MAT136H5 S 2025 - All Sections 6.3 preparation check

多重下拉选择题

Question: Find the 3rd Maclaurin Polynomial of . 𝑓 ( 𝑥 ) = ( 1 + 𝑥 ) 3 2 Solution steps: a) What is the derivative of   𝑓 ( 𝑥 ) = ( 1 + 𝑥 ) 3 2 ?    [ Select ] (3/2) (1+x) (3/2) (1+x)^(1/2) (2/5) (1+x)^(5/2) b) What is 𝑓 ″ ( 𝑥 ) ?    [ Select ] (3/2) (1+x)^(-1/2) 2 (1+x)^(1/2) (3/4) (1+x)^(-1/2) c) What is 𝑓 ‴ ( 𝑥 ) ?    [ Select ] (-3/8) (1+x)^(-2) (-3/8) (1+x)^(-3/2) (3/4) (1+x)^(-3/2) The definition of the 3rd Maclaurin polynomial is: 𝑝 3 ( 𝑥 ) = 𝑓 ( 0 ) + 𝑓 ′ ( 0 ) 𝑥 + 𝑓 ″ ( 0 ) 2 ! 𝑥 2 + 𝑓 ‴ ( 0 ) 3 ! 𝑥 3   Therefore we should evaluate the derivatives and the function at 𝑥 = 0 . d) What is 𝑓 ( 0 ) ?    [ Select ] 1/2 0 2/3 1 e) What is 𝑓 ′ ( 0 ) ?    [ Select ] 3/4 3/2 1 1/2 f) What is 𝑓 ″ ( 0 ) ?    [ Select ] 3/4 0 3/2 -3/8 g) What is 𝑓 ‴ ( 0 ) ?    [ Select ] -3/8 3/4 1 1/2 h) Putting everything together now, which of the below options is the correct 3rd Maclaurin Polynomial of 𝑓 ( 𝑥 ) = ( 1 + 𝑥 ) 3 2 ?    [ Select ] Option II Option V Option IV Option III Option I Option I.     𝑝 3 ( 𝑥 ) = 1 + 3 4 𝑥 + 3 8 𝑥 2 − 3 8 𝑥 3     Option II.     𝑝 3 ( 𝑥 ) = 1 + 3 2 𝑥 + 3 4 𝑥 2 − 3 8 𝑥 3     Option III.     𝑝 3 ( 𝑥 ) = 2 + 3 4 𝑥 − 3 8 𝑥 2 − 1 16 𝑥 3      Option IV.    𝑝 3 ( 𝑥 ) = 1 + 3 2 𝑥 + 3 8 𝑥 2 − 1 16 𝑥 3   Option V.     𝑝 3 ( 𝑥 ) = 1 + 3 2 𝑥 + 3 4 𝑥 2 + 3 42 𝑥 3     

查看解析

查看解析

标准答案
Please login to view
思路分析
Let me break down each part and option carefully so you can see where each piece comes from and why it fits or doesn't fit. a) What is the derivative of f(x) = (1+x)^{3/2}? - The general power-rule application gives f'(x) = (3/2)(1+x)^{1/2}. This matches the first option: (3/2) (1+x)^{1/2}. It is the correct expression for f'(x). b) What is f''(x)? - Differentiating again, f''(x) = (3/2) * (1/2) * (1+x)^{-1/2} = (3/4)(1+x)^{-1/2}. The second option corre......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

Question text 9Marks a) The Maclaurin series of [math: f(x)=2cos⁡(x)]f(x) = 2\cos(x) is [math: f(x)=]Answer 1[input][math: +]Answer 2[input][math: x+]Answer 3[input][math: x2+⋯]x^2+\cdotsb) The Maclaurin series of [math: g(x)=6ln⁡(1−x)]g(x) = 6\ln(1-x) is [math: g(x)=]Answer 4[input][math: +]Answer 5[input][math: x+]Answer 6[input][math: x2+⋯]x^2+\cdotsc) The Maclaurin series of [math: h(x)=2cos⁡(3x)+6ln⁡(1−x2)]h(x) = 2\cos(3x) + 6\ln(1-x^2) is[math: h(x)=]Answer 7[input][math: +]Answer 8[input][math: x+]Answer 9[input][math: x2+⋯]x^2+\cdotsPlease answer all parts of the question.Notes Report question issue Question 7 Notes

Question text 9Marks a) The Maclaurin series of [math: f(x)=2cos⁡(x)]f(x) = 2\cos(x) is [math: f(x)=]Answer 1[input][math: +]Answer 2[input][math: x+]Answer 3[input][math: x2+⋯]x^2+\cdotsb) The Maclaurin series of [math: g(x)=6ln⁡(1−x)]g(x) = 6\ln(1-x) is [math: g(x)=]Answer 4[input][math: +]Answer 5[input][math: x+]Answer 6[input][math: x2+⋯]x^2+\cdotsc) The Maclaurin series of [math: h(x)=2cos⁡(3x)+6ln⁡(1−x2)]h(x) = 2\cos(3x) + 6\ln(1-x^2) is[math: h(x)=]Answer 7[input][math: +]Answer 8[input][math: x+]Answer 9[input][math: x2+⋯]x^2+\cdotsNotes Report question issue Question 7 Notes

Question texta) The Maclaurin series of [math: ex2]e^{x^2} is [math: ex2=]e^{x^2} =Answer 1 Question 9[input] [math: +] Answer 2 Question 9[input][math: x] [math: +] Answer 3 Question 9[input][math: x2]x^2 [math: +] Answer 4 Question 9[input][math: x3]x^3 [math: +…]+\ldotsb) The Maclaurin series of [math: ∫0x6ln⁡(1+t)sin⁡(t)dt]\int_0^x 6\ln(1+t)\sin(t) dt is [math: ∫0x6ln⁡(1+t)sin⁡(t)dt=]\int_0^x 6\ln(1+t)\sin(t) dt =Answer 5 Question 9[input] [math: +] Answer 6 Question 9[input][math: x] [math: +] Answer 7 Question 9[input][math: x2]x^2 [math: +] Answer 8 Question 9[input][math: x3]x^3 [math: +…]+\ldotsPlease answer all parts of the question.

Question texta) The Maclaurin series of [math: ex2]e^{x^2} is [math: ex2=]e^{x^2} =Answer 1 Question 9[input] [math: +] Answer 2 Question 9[input][math: x] [math: +] Answer 3 Question 9[input][math: x2]x^2 [math: +] Answer 4 Question 9[input][math: x3]x^3 [math: +…]+\ldotsb) The Maclaurin series of [math: ∫0x6ln⁡(1+t)sin⁡(t)dt]\int_0^x 6\ln(1+t)\sin(t) dt is [math: ∫0x6ln⁡(1+t)sin⁡(t)dt=]\int_0^x 6\ln(1+t)\sin(t) dt =Answer 5 Question 9[input] [math: +] Answer 6 Question 9[input][math: x] [math: +] Answer 7 Question 9[input][math: x2]x^2 [math: +] Answer 8 Question 9[input][math: x3]x^3 [math: +…]+\ldots

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!