题目
题目

MAT136H5 S 2025 - All Sections 6.4 preparation check

数值题

Read Example 6.22 in the textbook Links to an external site. .  In Example 6.22 part b, if you use the first 5 terms of the Maclaurin series (instead of the first 4 terms as in the example), what would the sum be? Answer with 4 decimal places.    Note: All 4 decimal places might not be a correct approximation of the integral. Answer with 4 decimal places anyway. 

查看解析

查看解析

标准答案
Please login to view
思路分析
The question asks to evaluate a specific Maclaurin-series approximation from Example 6.22 part b using the first 5 terms instead of the first 4, and to output the result to 4 decimal places. Before proceeding, I need the exact function being approximated in Example 6.22 part b, as well as the point at which the Maclaurin series is evaluated (for instance, the value of x). Without the function and the target x, I cannot compute the truncated Maclaurin sum or th......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

Question text 9Marks a) The Maclaurin series of [math: f(x)=2cos⁡(x)]f(x) = 2\cos(x) is [math: f(x)=]Answer 1[input][math: +]Answer 2[input][math: x+]Answer 3[input][math: x2+⋯]x^2+\cdotsb) The Maclaurin series of [math: g(x)=6ln⁡(1−x)]g(x) = 6\ln(1-x) is [math: g(x)=]Answer 4[input][math: +]Answer 5[input][math: x+]Answer 6[input][math: x2+⋯]x^2+\cdotsc) The Maclaurin series of [math: h(x)=2cos⁡(3x)+6ln⁡(1−x2)]h(x) = 2\cos(3x) + 6\ln(1-x^2) is[math: h(x)=]Answer 7[input][math: +]Answer 8[input][math: x+]Answer 9[input][math: x2+⋯]x^2+\cdotsPlease answer all parts of the question.Notes Report question issue Question 7 Notes

Question text 9Marks a) The Maclaurin series of [math: f(x)=2cos⁡(x)]f(x) = 2\cos(x) is [math: f(x)=]Answer 1[input][math: +]Answer 2[input][math: x+]Answer 3[input][math: x2+⋯]x^2+\cdotsb) The Maclaurin series of [math: g(x)=6ln⁡(1−x)]g(x) = 6\ln(1-x) is [math: g(x)=]Answer 4[input][math: +]Answer 5[input][math: x+]Answer 6[input][math: x2+⋯]x^2+\cdotsc) The Maclaurin series of [math: h(x)=2cos⁡(3x)+6ln⁡(1−x2)]h(x) = 2\cos(3x) + 6\ln(1-x^2) is[math: h(x)=]Answer 7[input][math: +]Answer 8[input][math: x+]Answer 9[input][math: x2+⋯]x^2+\cdotsNotes Report question issue Question 7 Notes

Question texta) The Maclaurin series of [math: ex2]e^{x^2} is [math: ex2=]e^{x^2} =Answer 1 Question 9[input] [math: +] Answer 2 Question 9[input][math: x] [math: +] Answer 3 Question 9[input][math: x2]x^2 [math: +] Answer 4 Question 9[input][math: x3]x^3 [math: +…]+\ldotsb) The Maclaurin series of [math: ∫0x6ln⁡(1+t)sin⁡(t)dt]\int_0^x 6\ln(1+t)\sin(t) dt is [math: ∫0x6ln⁡(1+t)sin⁡(t)dt=]\int_0^x 6\ln(1+t)\sin(t) dt =Answer 5 Question 9[input] [math: +] Answer 6 Question 9[input][math: x] [math: +] Answer 7 Question 9[input][math: x2]x^2 [math: +] Answer 8 Question 9[input][math: x3]x^3 [math: +…]+\ldotsPlease answer all parts of the question.

Question texta) The Maclaurin series of [math: ex2]e^{x^2} is [math: ex2=]e^{x^2} =Answer 1 Question 9[input] [math: +] Answer 2 Question 9[input][math: x] [math: +] Answer 3 Question 9[input][math: x2]x^2 [math: +] Answer 4 Question 9[input][math: x3]x^3 [math: +…]+\ldotsb) The Maclaurin series of [math: ∫0x6ln⁡(1+t)sin⁡(t)dt]\int_0^x 6\ln(1+t)\sin(t) dt is [math: ∫0x6ln⁡(1+t)sin⁡(t)dt=]\int_0^x 6\ln(1+t)\sin(t) dt =Answer 5 Question 9[input] [math: +] Answer 6 Question 9[input][math: x] [math: +] Answer 7 Question 9[input][math: x2]x^2 [math: +] Answer 8 Question 9[input][math: x3]x^3 [math: +…]+\ldots

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!