题目
题目
单项选择题

Your dataset consists of documents, each of which may be represented as a 3 dimensional feature vector. You decide to fit a logistic regression to the data, and derive the following estimates for your weight vector: [math: β=(−ln⁡(2),ln⁡(5),−ln⁡(7))]\beta = (-\ln(2), \ln(5), -\ln (7)). You then receive a new document [math: x∗=(1,−1,−1)]x_* = (1,-1,-1). Compute [math: P(y∗=0|x∗)]P(y_*=0|x_*).

选项
A.a. 0.6814
B.b. 0.3343
C.c. 0.3453
D.d. 0.5882
题目图片
查看解析

查看解析

标准答案
Please login to view
思路分析
We start by restating the problem and the given quantities to ensure clarity: the weight vector is β = (-ln(2), ln(5), -ln(7)) and the new feature vector is x* = (1, -1, -1). The logistic model gives P(y=1|x) = sigmoid(β^T x) where sigmoid(z) = 1 / (1 + exp(-z)). We need P(y* = 0 | x*) which is 1 - P(y* = 1 | x*) = 1 - sigmoid(β^T x*). So our first step is to compute the inner product ......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!