题目
题目

MATH1061/1002/1021 (ND) MATH1061 Canvas Quiz 6

单项选择题

Row echelon forms of the augmented matrices for three systems of linear equations in \(x\), \(y\) and \(z\) are given below. For each augmented matrix, \(A\), \(B\) and \(C\), which of the following options correctly describes the number of solutions to the corresponding system of linear equations? \[ \underbrace { \begin{bmatrix} 1 & 0 & 0 & \bigm | & -2 \\ 0 & 1 & 0 & \bigm | & 1 \\ 0 & 0 & 0 & \bigm | & -2 \end{bmatrix} }_{A} \qquad \underbrace { \begin{bmatrix} 1 & 0 & 0 & \bigm | & 0 \\ 0 & 1 & 0 & \bigm | & 2 \\ 0 & 0 & 1 & \bigm | & -1 \end{bmatrix} }_{B} \qquad \underbrace { \begin{bmatrix} 1 & 0 & 0 & \bigm | & 1 \\ 0 & 1 & 0 & \bigm | & -3 \\ 0 & 0 & 0 & \bigm | & 0 \end{bmatrix} }_{C} \]

查看解析

查看解析

标准答案
Please login to view
思路分析
First, restating the problem in my own words helps focus: we have three augmented matrices A, B, and C, each representing a system of linear equations in x, y, z. We must determine the number of solutions for each system based on their row echelon forms. Option A describes A as inconsistent. Looking at A, the last row is [0 0 0 | -2]. This corresponds to the equation 0x + 0y + 0z = -2, which is impossible. Suc......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!