题目
题目

ALGII141-027 3.7 Practice Problems

简答题

A retail store sells two types of shoes, sneakers and sandals.  The store owner pays $8 for the sneakers and $14 for the sandals.  The sneakers can be sold for $10 and the sandals can be sold for $17.  The owner of the store estimates that she won't sell more than 200 shoes each month, and doesn't plan to invest more that $2,000 on inventory of the shoes.  If she sold the number of sneakers and sandals that could maximize her profit, what would her maximum profit be? P = $

查看解析

查看解析

标准答案
Please login to view
思路分析
We need to maximize profit given two product types with constraints on quantity and inventory cost. First, define variables: let x be the number of sneakers sold, and y be the number of sandals sold. - Each sneaker yields a profit of selling price minus cost: 10 − 8 = 2 dollars per pair. - Each sandal yields a profit of selling price minus cost: 17 − 14 = 3 dollars per pair. - Total profit P = 2x + 3y. Constraints: - Quantity constraint: x + y ≤ 200 (she won’t sell more than 200 shoes per month). - Inventory constraint: 8x + 14y ≤ 2000 (she won’t invest more than $2000 in inventory). - Nonnegativity: x ≥ 0, y ≥ 0. To find the maximum, we examine the feasible re......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

Solving a linear program can never result in integer values for the decision variables. 

Consider the following optimization problem and the constraint boundary lines given below. Maximize profit = 4X + 4Y  Constraints 3X + 2Y ≤ 150 X - 2Y ≤ 10 2X + 3Y ≤150 X, Y ≥ 0 If we increase the objective function coefficient of x by 2, i.e., 4 becomes 6, the new optimal solution includes point C.

Consider the following optimization problem and the constraint boundary lines given below. Maximize profit = 4X + 4Y  Constraints 3X + 2Y ≤ 150 X - 2Y ≤ 10 2X + 3Y ≤150 X, Y ≥ 0 When the constraint coefficient of x in the blue constraint changes from 1 to 3, the optimal solution changes. 

Consider the following Excel sensitivity report and it's accompanying problem:   Minimize cost = X + 2Y    subject to  X + 3Y ≥ 90   8X + 2Y ≥ 160    3X + 2Y ≥120    Y ≤ 70    X, Y≥ 0   Variable Cells                     Final Reduced Objective Allowable Allowable   Cell Name Value Cost Coefficient Increase Decrease   $B$3 X 25.71 0 1 2 0.333333333   $C$3 Y 21.43 0 2 1 1.333333333                 Constraints                     Final Shadow Constraint Allowable Allowable   Cell Name Value Price R.H. Side Increase Decrease   $J$6           LHS 90 0.57 90 62 50   $J$7           LHS 248.57 0 160 88.57142857 1E+30   $J$8           LHS 120 0.14 120 150 28.18181818   $J$9           LHS 21.43 0 70 1E+30 48.57142857   Suppose we add another variable, x3, with an objective function coefficient of 9, and constraint coefficients of 8, 3, and 5 for the first three constraints, respectively. What is the marginal impact of this new variable on the objective function? (In your calculations round all the numbers to 2 decimals.)       

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!