题目
题目

QANT_620-VA1-2025SP-VR Quiz_2_LP

单项选择题

Consider the following constraints from a linear programming problem: 2X + Y ≤ 200 X + 2Y ≤ 200 X, Y ≥ 0 If these are the only constraints, which of the following points (X,Y) cannot be the optimal solution?    

选项
A.(0, 0)
B.(0, 200)
C.(0, 100)
D.(100, 0)
查看解析

查看解析

标准答案
Please login to view
思路分析
We begin by listing and reading every option against the given constraints so we can test feasibility first. Option 1: (0, 0). Check: 2X + Y = 0 ≤ 200 and X + 2Y = 0 ≤ 200, with X ≥ 0, Y ≥ 0. This point satisfies all constraints, so it is feasible. Option 2: (0, 200). Check: 2X + Y = 0 + 200 = 200 ≤ 200, which satisfies the first ......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

Solving a linear program can never result in integer values for the decision variables. 

Consider the following optimization problem and the constraint boundary lines given below. Maximize profit = 4X + 4Y  Constraints 3X + 2Y ≤ 150 X - 2Y ≤ 10 2X + 3Y ≤150 X, Y ≥ 0 If we increase the objective function coefficient of x by 2, i.e., 4 becomes 6, the new optimal solution includes point C.

Consider the following optimization problem and the constraint boundary lines given below. Maximize profit = 4X + 4Y  Constraints 3X + 2Y ≤ 150 X - 2Y ≤ 10 2X + 3Y ≤150 X, Y ≥ 0 When the constraint coefficient of x in the blue constraint changes from 1 to 3, the optimal solution changes. 

Consider the following Excel sensitivity report and it's accompanying problem:   Minimize cost = X + 2Y    subject to  X + 3Y ≥ 90   8X + 2Y ≥ 160    3X + 2Y ≥120    Y ≤ 70    X, Y≥ 0   Variable Cells                     Final Reduced Objective Allowable Allowable   Cell Name Value Cost Coefficient Increase Decrease   $B$3 X 25.71 0 1 2 0.333333333   $C$3 Y 21.43 0 2 1 1.333333333                 Constraints                     Final Shadow Constraint Allowable Allowable   Cell Name Value Price R.H. Side Increase Decrease   $J$6           LHS 90 0.57 90 62 50   $J$7           LHS 248.57 0 160 88.57142857 1E+30   $J$8           LHS 120 0.14 120 150 28.18181818   $J$9           LHS 21.43 0 70 1E+30 48.57142857   Suppose we add another variable, x3, with an objective function coefficient of 9, and constraint coefficients of 8, 3, and 5 for the first three constraints, respectively. What is the marginal impact of this new variable on the objective function? (In your calculations round all the numbers to 2 decimals.)       

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!