题目
MATH1062_MATH1005_MATH1023 MATH1062/1023 Calculus Quiz 8
单项选择题
Suppose f ( x , t ) = e − 2 t sin ( x + 3 t ) . Which of the following is a good approximation of the value of f ( 2.02 , − 0.03 ) ? (Hint: first find the differential d f at the point ( 2 , 0 ) .)
选项
A.1.06
sin
(
2
)
+
0.11
cos
(
2
)
B.0.94
sin
(
2
)
+
0.11
cos
(
2
)
C.1.06
sin
(
2
)
−
0.07
cos
(
2
)
D.0.94
sin
(
2
)
−
0.07
cos
(
2
)
查看解析
标准答案
Please login to view
思路分析
Let's unpack the problem by identifying the function and the differential approach we should use.
The function given is f(x,t) = e^{-2t} sin(x + 3t).
We are asked to approximate f(2.02, -0.03) by first evaluating near the point (2, 0) and using the differential df.
First, compute the partial derivatives at (2,0):
- f_x(x,t) = e^{-2t} cos(x + 3t). At (2,0), this becomes f_x(2,0) = cos(2).
- f_t(x,t) = e^{-2t}[3 cos(x + 3t) − 2 sin(x + 3t)]. At (2,0), this becomes f_t(2,0) = 3 cos(2) − 2 sin(2).
Also, f(2,0) = e^0 sin(2) = sin(2).
We then use the differential df = f_x dx + f_t dt with ......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
at 的线性近似值为: 提示:at 的线性近似值为: 。
The linear approximation of 𝑓 ( 𝑥 ) = 5 𝑥 − 4 2 𝑥 2 + 1 at 𝑥 = − 3 is: Hint: The linear approximation of 𝑦 = 𝑓 ( 𝑥 ) at 𝑥 = 𝑥 0 is: 𝐿 ( 𝑥 ) = 𝑓 ′ ( 𝑥 0 ) ( 𝑥 − 𝑥 0 ) + 𝑓 ( 𝑥 0 ) .
This is a continuation of the previous question. What is the Linear Approximation of 𝑓 ( 𝑥 ) = tan 𝑥 at 𝑥 = 𝜋 4 ?
Suppose you are asked to find the Linear Approximation of 𝑓 ( 𝑥 ) = tan 𝑥 at 𝑥 = 𝜋 4 . Remember that the Linear Approximation is given by: 𝐿 ( 𝑥 ) = 𝑓 ( 𝑎 ) + 𝑓 ′ ( 𝑎 ) ( 𝑥 − 𝑎 ) (a) What is 𝑓 ( 𝜋 4 ) ? [ Select ] 2/sqrt(3) 1 -1 0 1/sqrt(2) (b) What is 𝑓 ′ ( 𝑥 ) ? [ Select ] f'(x)= sec^2x f'(x)= tan x f'(x) = sec x tan x f'(x) = sec x f'(x) = tan^2 x (c) What is 𝑓 ′ ( 𝜋 4 ) ? [ Select ] 1 2 sqrt(2) 0 4 1/sqrt(2)
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!