题目
题目

MATH1062_MATH1005_MATH1023 MATH1062/1023 Calculus Quiz 8

单项选择题

Suppose f ( x , t ) = e − 2 t sin ⁡ ( x + 3 t ) . Which of the following is a good approximation of the value of f ( 2.02 , − 0.03 ) ? (Hint: first find the differential d f at the point ( 2 , 0 ) .)

选项
A.1.06 sin ⁡ ( 2 ) + 0.11 cos ⁡ ( 2 )
B.0.94 sin ⁡ ( 2 ) + 0.11 cos ⁡ ( 2 )
C.1.06 sin ⁡ ( 2 ) − 0.07 cos ⁡ ( 2 )
D.0.94 sin ⁡ ( 2 ) − 0.07 cos ⁡ ( 2 )
查看解析

查看解析

标准答案
Please login to view
思路分析
Let's unpack the problem by identifying the function and the differential approach we should use. The function given is f(x,t) = e^{-2t} sin(x + 3t). We are asked to approximate f(2.02, -0.03) by first evaluating near the point (2, 0) and using the differential df. First, compute the partial derivatives at (2,0): - f_x(x,t) = e^{-2t} cos(x + 3t). At (2,0), this becomes f_x(2,0) = cos(2). - f_t(x,t) = e^{-2t}[3 cos(x + 3t) − 2 sin(x + 3t)]. At (2,0), this becomes f_t(2,0) = 3 cos(2) − 2 sin(2). Also, f(2,0) = e^0 sin(2) = sin(2). We then use the differential df = f_x dx + f_t dt with ......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!