题目
DIFFERENTIAL CALCULUS (MTH_251_020_W2025) Unit 5 - L'Hopital's Rule - PreClass
单项选择题
Find the linear approximation to f(x)=x2+3x at x=1.
查看解析
标准答案
Please login to view
思路分析
To approximate a function linearly near a point, we use the tangent line at that point. Start by identifying the function: f(x) = x^2 + 3x. Next, compute the value at the expansion ......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
at 的线性近似值为: 提示:at 的线性近似值为: 。
The linear approximation of 𝑓 ( 𝑥 ) = 5 𝑥 − 4 2 𝑥 2 + 1 at 𝑥 = − 3 is: Hint: The linear approximation of 𝑦 = 𝑓 ( 𝑥 ) at 𝑥 = 𝑥 0 is: 𝐿 ( 𝑥 ) = 𝑓 ′ ( 𝑥 0 ) ( 𝑥 − 𝑥 0 ) + 𝑓 ( 𝑥 0 ) .
This is a continuation of the previous question. What is the Linear Approximation of 𝑓 ( 𝑥 ) = tan 𝑥 at 𝑥 = 𝜋 4 ?
Suppose you are asked to find the Linear Approximation of 𝑓 ( 𝑥 ) = tan 𝑥 at 𝑥 = 𝜋 4 . Remember that the Linear Approximation is given by: 𝐿 ( 𝑥 ) = 𝑓 ( 𝑎 ) + 𝑓 ′ ( 𝑎 ) ( 𝑥 − 𝑎 ) (a) What is 𝑓 ( 𝜋 4 ) ? [ Select ] 2/sqrt(3) 1 -1 0 1/sqrt(2) (b) What is 𝑓 ′ ( 𝑥 ) ? [ Select ] f'(x)= sec^2x f'(x)= tan x f'(x) = sec x tan x f'(x) = sec x f'(x) = tan^2 x (c) What is 𝑓 ′ ( 𝜋 4 ) ? [ Select ] 1 2 sqrt(2) 0 4 1/sqrt(2)
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!