题目
题目

MAT135H5_F25_ALL SECTIONS 4.2 Preparation Check

单项选择题

This is a continuation of the previous question. What is the Linear Approximation of  𝑓 ( 𝑥 ) = tan ⁡ 𝑥  at  𝑥 = 𝜋 4 ?

选项
A.𝐿 ( 𝑥 ) = 𝑥 2 + 𝜋 4
B.𝐿 ( 𝑥 ) = 2 𝑥 − 𝜋 2
C.𝐿 ( 𝑥 ) = 2 𝑥 − 𝜋 4 + 1
D.𝐿 ( 𝑥 ) = 𝑥 − 𝜋 4 + 1
E.𝐿 ( 𝑥 ) = 2 𝑥 − 𝜋 2 + 1
查看解析

查看解析

标准答案
Please login to view
思路分析
We start by restating the problem to focus on what needs to be found. The task is to obtain the linear approximation (the tangent-line approximation) of f(x) = tan x at x = π/4, and then compare with the given options. First, recall the formula for the linear (Taylor) approximation at a = π/4: L(x) = f(a) + f'(a)(x − a). - Compute f(a): f(π/4) = tan(π/4) = 1. - Compute f'(x): the derivative of tan x is sec^2 x. Therefore f'(x) = sec^2 x. - Evaluate f'(a): f'(π/4) = sec^2(π/4). ......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!