题目
_MATH1013_1ABCD_2025 Subsection 3.1 (closed on 27 Sep)
简答题
Let \(f:\mathbb {R}\to \mathbb {R}\) be an odd function such that \(\displaystyle \lim _{x\to 0^+}{f(x)}=2\). Find \(\displaystyle \lim _{x\to 0^-}{f(x)}\). (Write down X if the limit does not exist.)
查看解析
标准答案
Please login to view
思路分析
Consider the defining property of an odd function: f is odd if and only if f(-x) = -f(x) for all x.
Given that the right-hand limit as x approaches 0 from the positive side exists and equals 2, i.e., lim_{x→0^+} f(x) = 2, we can examine the behavior n......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
Find the limit
NOTE: Due to formatting constraints, limits are shown with a horizontal bar in these quiz questions.For example: will be written as: \( \frac{lim}{x \rightarrow a }f(x) \)Solve the following limit and write your answer to three decimal places.\( \frac{lim}{x \rightarrow 2 } (\frac{x^3+7x^2-18x}{x^2-4}) \)
NOTE: Due to formatting constraints, limits are shown with a horizontal bar in these quiz questions.For example: will be written as: \( \frac{lim}{x \rightarrow a }f(x) \)Solve the following limit and write your answer to three decimal places.\( \frac{lim}{x \rightarrow \infty } (\frac{2x^2+4x+-6}{-2x^2+-7x+10}) \)
NOTE: Due to formatting constraints, limits are shown with a horizontal bar in these quiz questions.For example: will be written as: [math: limx→af(x)] \frac{lim}{x \rightarrow a }f(x) Solve the following limit and write your answer to three decimal places.[math: limx→2(x3+7x2−18xx2−4)] \frac{lim}{x \rightarrow 2 } (\frac{x^3+7x^2-18x}{x^2-4})
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!