题目
题目

_MATH1013_1ABCD_2025 Subsection 3.1 (closed on 27 Sep)

简答题

Let \(f:\mathbb {R}\to \mathbb {R}\) be an odd function such that \(\displaystyle \lim _{x\to 0^+}{f(x)}=2\). Find \(\displaystyle \lim _{x\to 0^-}{f(x)}\). (Write down X if the limit does not exist.)

查看解析

查看解析

标准答案
Please login to view
思路分析
Consider the defining property of an odd function: f is odd if and only if f(-x) = -f(x) for all x. Given that the right-hand limit as x approaches 0 from the positive side exists and equals 2, i.e., lim_{x→0^+} f(x) = 2, we can examine the behavior n......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!