题目
题目

MATH_1225_17255_202501 2.2 The Limit of the Function

多重下拉选择题

We write lim x→af(x)=L and say "the limit of f(x), as x approaches a, is equal to L" if we can make the values of f(x) arbitrarily close to L by taking x   to be sufficiently close to a .

查看解析

查看解析

标准答案
Please login to view
思路分析
In this statement about limits, four components are referenced, each playing a distinct role in the definition. Option 1: f(x) — This part represents the function’s values. The phrase 'the limit of f(x)' concerns what t......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

Which of the following statements must be true, and which are false? Note: each part is independent from the others. a) If 𝑓 ( 𝑥 ) is a polynomial, then lim 𝑥 → 5 𝑓 ( 𝑥 )  can be evaluated by computing 𝑓 ( 5 ) . [ Select ] False True b) If 𝑅 ( 𝑥 )   is a rational function, then lim 𝑥 → 7 𝑅 ( 𝑥 )     can be evaluated by computing 𝑅 ( 7 )  . [ Select ] False True c) If 𝑝 ( 𝑥 )  is a polynomial, then lim 𝑥 → 5 + 𝑝 ( 𝑥 )    can be evaluated by computing 𝑝 ( 5 )  . [ Select ] True False d) If 𝑓 ( 2 ) = 4  then lim 𝑥 → 2 [ 𝑓 ( 𝑥 ) ] 2 = 16   [ Select ] False True e) If   lim 𝑥 → 4 ( 5 𝑓 ( 𝑥 ) ) = 15   , then lim 𝑥 → 4 𝑓 ( 𝑥 ) = 3   . [ Select ] True False f) If   lim 𝑥 → 4 ( 𝑥 𝑓 ( 𝑥 ) ) = 8   , then lim 𝑥 → 4 𝑓 ( 𝑥 ) = 2    . [ Select ] False True

  the graph of f(x)f\left(x\right) given above. Use it to find the following one-sided and two-sided limits. (If a limit does not exist, write DNE.) limx→1−f(x)=\lim\limits_{x\:\rightarrow1^-}\:f\left(x\right)= [Fill in the blank], limx→1+f(x)=\lim\limits_{x\rightarrow1^+}f\left(x\right)= [Fill in the blank], limx→1f(x)=\lim\limits_{x\rightarrow1}f\left(x\right)\:= [Fill in the blank], limx→2f(x)=\lim\limits_{x\rightarrow2}f\left(x\right)= [Fill in the blank], limx→3−f(x)=\lim\limits_{x\rightarrow3^-}f\left(x\right)= [Fill in the blank], limx→3f(x)=\lim\limits_{x\rightarrow3}f\left(x\right)=[Fill in the blank], limx→4f(x)=\lim\limits_{x\rightarrow4}f\left(x\right)=[Fill in the blank],

                  Consider the two graphs above. What are the following limits? (If a limit does not exist, write DNE.) limx→1f(x)=\lim\limits_{x\rightarrow1}f\left(x\right)= [Fill in the blank], limx→1g(x)=\lim\limits_{x\rightarrow1}g\left(x\right)= [Fill in the blank], Note that the two functions f(x)f\left(x\right) and g(x)g\left(x\right) are identical except for at x=1x=1    . Is the following statement TRUE or FALSE? For any function  h(x)h\left(x\right) , the limit limx→ah(x)\lim\limits_{x\rightarrow a}h\left(x\right) does not depend on the value of h(x)h\left(x\right) at  x=ax=a  , or even whether h(a)h\left(a\right) is defined or not.  [Fill in the blank], (Write "TRUE" or "FALSE".)  

Question text Consider the function [math: f(x)={3x+5,x<33x2+4x−2,x≥3] f(x)= \begin{cases} \displaystyle & {3\,x+5}, & x < {3} \\ & {3\,x^2+4\,x-2}, & x \geq {3}\end{cases} . a) [math: limx→3−f(x)=]\displaystyle \lim_{{x \to {3}^-}} f(x) = [input] b) [math: limx→3+f(x)=]\displaystyle\lim_{{x \to {3}^+}} f(x) = [input] c) [math: limx→3f(x)=]\displaystyle\lim_{{x \to {3}}} f(x) = [select: (Clear my choice), does not exist since left limit is not equal to right limit., exists and equals 37] Check Question 3

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!