题目
_MATH1013_1ABCD_2025 Subsection 3.2 (closed on 4 Oct)
简答题
Compute [math: limx→−∞3x4−4x3−2x+18x4+9x2+5]\displaystyle \lim _{x\to -\infty }{\frac {3x^4-4x^3-2x+1}{8x^4+9x^2+5}}. (Use I to stand for [math: ∞]\infty if needed.)
查看解析
标准答案
Please login to view
思路分析
We start by examining the given limit: lim_{x→-∞} (3x^4 - 4x^3 - 2x + 1) / (8x^4 + 9x^2 + 5).
A standard trick for rational functions as x grows without bound is to divide every term by the ......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
NOTE: Due to formatting constraints, limits are shown with a horizontal bar in these quiz questions.For example: will be written as: [math: limx→af(x)] \frac{lim}{x \rightarrow a }f(x) Solve the following limit and write your answer to three decimal places.[math: limx→∞(2x2+4x+−6−2x2+−7x+10)] \frac{lim}{x \rightarrow \infty } (\frac{2x^2+4x+-6}{-2x^2+-7x+10})
NOTE: Due to formatting constraints, limits are shown with a horizontal bar in these quiz questions.For example: will be written as: [math: limx→af(x)] \frac{lim}{x \rightarrow a }f(x) Solve the following limit and write your answer to three decimal places.[math: limx→∞(−2x+7x2−3x2+−4)] \frac{lim}{x \rightarrow \infty } (\frac{-2x+7x^2}{-3x^2+-4})
Compute \(\displaystyle \lim _{x\to -\infty }{\frac {x^4-8x^3-3x+5}{6x^4+7x^2+3}}\). (Use I to stand for \(\infty \) if needed.)
Compute [math: limx→−∞x4−8x3−3x+56x4+7x2+3]\displaystyle \lim _{x\to -\infty }{\frac {x^4-8x^3-3x+5}{6x^4+7x^2+3}}. (Use I to stand for [math: ∞]\infty if needed.)
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!