题目
_MATH1013_1ABCD_2025 Subsection 3.2 (closed on 4 Oct)
简答题
Compute limx→−∞x13[math]\displaystyle \lim _{x\to -\infty }{x^{\frac {1}{3}}}. (Use I to stand for ∞[math]\infty if needed.)
查看解析
标准答案
Please login to view
思路分析
We start by restating the problem to ensure understanding: evaluate the limit as x approaches negative infinity of the cube root of x, i.e., lim_{x→-∞} x^(1/3).
Note about the answer options: the provided data shows there are no multiple-choice options to analyze, only a short ans......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
NOTE: Due to formatting constraints, limits are shown with a horizontal bar in these quiz questions.For example: will be written as: [math: limx→af(x)] \frac{lim}{x \rightarrow a }f(x) Solve the following limit and write your answer to three decimal places.[math: limx→∞(2x2+4x+−6−2x2+−7x+10)] \frac{lim}{x \rightarrow \infty } (\frac{2x^2+4x+-6}{-2x^2+-7x+10})
NOTE: Due to formatting constraints, limits are shown with a horizontal bar in these quiz questions.For example: will be written as: [math: limx→af(x)] \frac{lim}{x \rightarrow a }f(x) Solve the following limit and write your answer to three decimal places.[math: limx→∞(−2x+7x2−3x2+−4)] \frac{lim}{x \rightarrow \infty } (\frac{-2x+7x^2}{-3x^2+-4})
Compute \(\displaystyle \lim _{x\to -\infty }{\frac {x^4-8x^3-3x+5}{6x^4+7x^2+3}}\). (Use I to stand for \(\infty \) if needed.)
Compute [math: limx→−∞x4−8x3−3x+56x4+7x2+3]\displaystyle \lim _{x\to -\infty }{\frac {x^4-8x^3-3x+5}{6x^4+7x^2+3}}. (Use I to stand for [math: ∞]\infty if needed.)
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!