้ข˜็›ฎ
้ข˜็›ฎ

MAT135H5_F25_ALL SECTIONS 2.4 Preparation Check

ๅคš้‡ไธ‹ๆ‹‰้€‰ๆ‹ฉ้ข˜

Consider the function ๐‘“ ( ๐‘ฅ ) = { ๐‘ฅ 2 + 1 ๐‘– ๐‘“ ๐‘ฅ < 2 3 ๐‘– ๐‘“ ๐‘ฅ = 2 7 โˆ’ ๐‘ฅ ๐‘– ๐‘“ ๐‘ฅ > 2 .ย  We aim to find out if ๐‘“ ( ๐‘ฅ ) has a discontinuity at ๐‘ฅ = 2 , and if so, of what type. In order to do that, first find the following information: ๐‘“ ( 2 ) ย = [ Select ] 5 3 2 7 lim ๐‘ฅ โŸถ 2 โˆ’ ๐‘“ ( ๐‘ฅ ) ย = [ Select ] 7 3 2 5 lim ๐‘ฅ โŸถ 2 + ๐‘“ ( ๐‘ฅ ) ย = [ Select ] 5 7 2 3 Is ๐‘“ ( ๐‘ฅ ) continuous or discontinuous at ๐‘ฅ = 2 ? [ Select ] discontinuous continuous If ๐‘“ ( ๐‘ฅ ) is discontinuous at ๐‘ฅ = 2 , what type of discontinuity is it? [ Select ] f is continuous An infinite discontinuity A removable discontinuity A jump discontinuity ย 

ๆŸฅ็œ‹่งฃๆž

ๆŸฅ็œ‹่งฃๆž

ๆ ‡ๅ‡†็ญ”ๆกˆ
Please login to view
ๆ€่ทฏๅˆ†ๆž
We are given a piecewise function f(x): - f(x) = x^2 + 1 if x < 2 - f(x) = 3 if x = 2 - f(x) = 7 โˆ’ x if x > 2 and several prompts to fill in for x = 2. First, restating the information: - f(2) = [Select] corresponds to the actual value of the function at x = 2, which is 3 according to the definition. - lim_{x โ†’ 2โป} f(x) = [Select] is the left-hand limit as x approaches 2 from below. Since x < 2 uses x^2 + 1, this tends to 2^2 + 1 = 5, so the left-hand limit is 5. - lim_{x โ†’ 2โบ} f(x) = [Select] is the right-hand limit as x approaches 2 fr......Login to view full explanation

็™ปๅฝ•ๅณๅฏๆŸฅ็œ‹ๅฎŒๆ•ด็ญ”ๆกˆ

ๆˆ‘ไปฌๆ”ถๅฝ•ไบ†ๅ…จ็ƒ่ถ…50000้“่€ƒ่ฏ•ๅŽŸ้ข˜ไธŽ่ฏฆ็ป†่งฃๆž,็Žฐๅœจ็™ปๅฝ•,็ซ‹ๅณ่Žทๅพ—็ญ”ๆกˆใ€‚

็ฑปไผผ้—ฎ้ข˜

Suppose that with a certain phone company, an international long distance phone call from Canada to Brazil costs $0.90 for the first minute (up to and including 60 seconds), plus $0.50 for each additional minute or part of a minute. Note: "Part of a minute" means that if a new minute is started even just by one second, a full minute is charged. For example, a 5 min 1 sec phone call costs the same as a 5 min 50 sec phone call and the same as a 6 min 0 sec phone call. ย  Suppose ๐ถ ( ๐‘ก ) is the function that gives the cost of making a ๐‘ก minute long phone call.ย  On a piece of paper, sketch a graph showingย  ๐ถ ( ๐‘ก ) (with ๐ถ on the ๐‘ฆ -axis and ๐‘ก on the ๐‘ฅ -axis). Then use your graph to evaluate each of the following: (Write DNE for undefined.) ๐ถ ( 2.5 ) = [ Select ] DNE 1.9 1.4 2.4 2.9 ๐ถ ( 4 ) = [ Select ] 3.4 1.9 2.9 2.4 DNE lim ๐‘ฅ โ†’ 3.1 ๐ถ ( ๐‘ก ) = [ Select ] 1.9 1.4 2.9 2.4 DNE lim ๐‘ฅ โ†’ 4 โˆ’ ๐ถ ( ๐‘ก ) = [ Select ] 2.4 1.4 2.9 1.9 DNE lim ๐‘ฅ โ†’ 4 + ๐ถ ( ๐‘ก ) = [ Select ] DNE 2.9 2.4 3.4 1.9 lim ๐‘ฅ โ†’ 4 ๐ถ ( ๐‘ก ) = [ Select ] 1.9 2.9 DNE 3.4 2.4

Consider this graph of the functionย  ๐‘“ ( ๐‘ฅ ) . Which of the following statements are true and which are false?ย  lim ๐‘ฅ โ†’ 3 โˆ’ ๐‘“ ( ๐‘ฅ ) = lim ๐‘ฅ โ†’ 3 + ๐‘“ ( ๐‘ฅ ) [ Select ] False True lim ๐‘ฅ โ†’ 1 ๐‘“ ( ๐‘ฅ ) = ๐‘“ ( 1 ) ย  ย  [ Select ] True False ๐‘“ ( ๐‘ฅ ) ย has a vertical asymptote at ๐‘ฅ = 4 . [ Select ] False True ๐‘“ ( ๐‘ฅ ) ย has a vertical asymptote at ๐‘ฅ = 6 ย . [ Select ] False True lim ๐‘ฅ โ†’ 4 โˆ’ ๐‘“ ( ๐‘ฅ ) = lim ๐‘ฅ โ†’ 4 + ๐‘“ ( ๐‘ฅ ) [ Select ] False True lim ๐‘ฅ โ†’ 4 ๐‘“ ( ๐‘ฅ ) = โˆž [ Select ] True False lim ๐‘ฅ โ†’ 6 ๐‘“ ( ๐‘ฅ ) = โˆž [ Select ] False True The limit lim ๐‘ฅ โ†’ 4 ๐‘“ ( ๐‘ฅ ) exists, but lim ๐‘ฅ โ†’ 6 ๐‘“ ( ๐‘ฅ ) ย does not exist. [ Select ] False True

Consider this graph of the functionย  ๐‘“ ( ๐‘ฅ ) . Which of the following statements are true and which are false?ย  lim ๐‘ฅ โ†’ 3 โˆ’ ๐‘“ ( ๐‘ฅ ) = lim ๐‘ฅ โ†’ 3 + ๐‘“ ( ๐‘ฅ ) [ Select ] False True lim ๐‘ฅ โ†’ 1 ๐‘“ ( ๐‘ฅ ) = ๐‘“ ( 1 ) ย  ย  [ Select ] False True ๐‘“ ( ๐‘ฅ ) ย has a vertical asymptote at ๐‘ฅ = 4 . [ Select ] True False ๐‘“ ( ๐‘ฅ ) ย has a vertical asymptote at ๐‘ฅ = 6 ย . [ Select ] False True lim ๐‘ฅ โ†’ 4 โˆ’ ๐‘“ ( ๐‘ฅ ) = lim ๐‘ฅ โ†’ 4 + ๐‘“ ( ๐‘ฅ ) [ Select ] True False lim ๐‘ฅ โ†’ 4 ๐‘“ ( ๐‘ฅ ) = โˆž [ Select ] False True lim ๐‘ฅ โ†’ 6 ๐‘“ ( ๐‘ฅ ) = โˆž False The limit lim ๐‘ฅ โ†’ 4 ๐‘“ ( ๐‘ฅ ) exists, but lim ๐‘ฅ โ†’ 6 ๐‘“ ( ๐‘ฅ ) ย does not exist. [ Select ] True False

MTH1010_09_10_3

ๆ›ดๅคš็•™ๅญฆ็”Ÿๅฎž็”จๅทฅๅ…ท

ๅŠ ๅ…ฅๆˆ‘ไปฌ๏ผŒ็ซ‹ๅณ่งฃ้” ๆตท้‡็œŸ้ข˜ ไธŽ ็‹ฌๅฎถ่งฃๆž๏ผŒ่ฎฉๅคไน ๅฟซไบบไธ€ๆญฅ๏ผ