题目
ECEN-314:200,501 Final Exam- Requires Respondus LockDown Browser
单项选择题
Which of the following is the correct inverse Laplace Transform of 𝑋 ( 𝑠 ) = 2 𝑠 + 1 𝑠 2 + 2 𝑠 + 5 ?
选项
A.𝑒
−
2
𝑡
[
1
2
𝑐
𝑜
𝑠
(
𝑡
)
−
2
𝑠
𝑖
𝑛
(
𝑡
)
]
𝑢
(
𝑡
)
B.𝑒
−
𝑡
[
2
𝑐
𝑜
𝑠
(
2
𝑡
)
−
1
2
𝑠
𝑖
𝑛
(
2
𝑡
)
]
𝑢
(
𝑡
)
C.𝑒
−
2
𝑡
[
2
𝑐
𝑜
𝑠
(
𝑡
)
+
1
2
𝑠
𝑖
𝑛
(
𝑡
)
]
𝑢
(
𝑡
)
D.𝑒
−
𝑡
[
2
𝑐
𝑜
𝑠
(
2
𝑡
)
+
1
2
𝑠
𝑖
𝑛
(
2
𝑡
)
]
𝑢
(
𝑡
)
E.𝑒
−
2
𝑡
[
2
𝑐
𝑜
𝑠
(
𝑡
)
−
1
2
𝑠
𝑖
𝑛
(
𝑡
)
]
𝑢
(
𝑡
)
F.𝑒
−
𝑡
[
1
2
𝑐
𝑜
𝑠
(
2
𝑡
)
−
2
𝑠
𝑖
𝑛
(
2
𝑡
)
]
𝑢
(
𝑡
)
查看解析
标准答案
Please login to view
思路分析
{
"reasoning": "To tackle this inverse Laplace transform, I’ll break X(s) into parts whose time-domain forms we know.\n\nFirst, consider the term 2/s. Its inverse Laplace transform is simply the constant 2 for t ≥ 0, i.e., L^{-1}{2/s} = 2. This contributes a constant component 2·u(t) in the time domain.\n\nNext, examine 1/(s^2 + 2s + 5). Completing the square gives s^2 + 2s + 5 = (s + 1)^2 + 4. This matches the standard form for e^{-at} sin(bt) and e^{-at} cos(bt) terms:\n- L{e^{-t} cos(2t)} = (s + 1)/[(s + 1)^2 + 4]\n- L{e^{-t} sin(2t)} = 2/[(s + 1)^2 + 4]\n\nWe can express 1/[(s + 1)^2 + 4] as (1/2) · [ 2/((s + 1)^2 + 4) ], which corresponds to (1/2)·L{e^{-t} sin(2t)}. Therefore, L^{-1}{1/[(s + 1)^2 + 4]} = (1/2) e^{-t} sin(2t).\n\nPutting t......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!