题目
题目

MATH0046_24-25 Quiz week 9 (Assessed)

单项选择题

Question texta) Consider the coordinate transformation given by [math: x=2u+3v11]x = {\frac{2\,u+3\,v}{11}},[math: y=u−4v11]y = {\frac{u-4\,v}{11}}. Compute the absolute value of the Jacobian of [math: x,y] with respect to [math: u,v][math: J] = [input] b) Let [math: Ω]\Omega be the second quadrant of the [math: xy]-plane, i.e. the region described by the inequalities [math: x≤0] x \le 0 , [math: y≥0] y \ge 0 . Using the coordinate transform from part a evaluate[math: ∫∫Ωe−t(x−2y)2dxdy] \int\int_\Omega {e^ {- t\,{\left(x-2\,y\right)}^2 }} \: \mathrm{d} x \mathrm{d} y = [input] Here [math: t] is a positive constant. Check Question 1

查看解析

查看解析

标准答案
Please login to view
思路分析
We begin by restating the given coordinate transformation and then compute its Jacobian. Transformation: x = (2u + 3v)/11 and y = (u − 4v)/11. Compute partial derivatives: - ∂x/∂u = 2/11, ∂x/∂v = 3/11 - ∂y/......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!