题目
单项选择题
Question81 A widely used utility function in the economics literature is the constant rate of risk aversion utility function. It is given by: [math] Assume that an agent lives for three periods (t=0,1,2) and discounts future utility at rate β=0.8 (per period), and the degree of risk aversion [math] The agent is born with asset level a0 =5, and his/her labour market income is y0 =10, and y1 =15, for periods 0 and 1 respectively, the agent retires in the last period (no labour income in period 2). The interest rate in this economy is r=5%. Please answer the following questions based on the information displayed here. Choose the best option available. The optimal consumption at t=1 is approximately (2-decimal places) c1 = 16.49 The optimal consumption at t=1 is approximately (2-decimal places) c1 = 10.19 The optimal consumption at t=1 is approximately (2-decimal places) c1 = 16.67 The optimal consumption at t=1 is approximately (2-decimal places) c1 = 11.12 The optimal consumption at t=1 is approximately (2-decimal places) c1 = 9.34 ResetMaximum marks: 2 Flag question undefined
选项
A.The optimal consumption at t=1 is approximately (2-decimal places) c1 = 16.49
B.The optimal consumption at t=1 is approximately (2-decimal places) c1 = 10.19
C.The optimal consumption at t=1 is approximately (2-decimal places) c1 = 16.67
D.The optimal consumption at t=1 is approximately (2-decimal places) c1 = 11.12
E.The optimal consumption at t=1 is approximately (2-decimal places) c1 = 9.34
查看解析
标准答案
Please login to view
思路分析
To analyze which option is correct, we must first restate the problem setup and examine what determines c1 in this CRRA intertemporal problem. The agent lives for three periods (t = 0,1,2), discounting future utility with β = 0.8 per period, and faces risk aversion characterized by the CRRA parameter (not explicitly given here). The agent starts with assets a0 = 5 and labor income y0 = 10 in period 0, y1 = 15 in period 1, and no labor income in period 2 (retirement). The gross interest rate is r = 5%. The question asks for the best approximation of the optimal consumption in period 1, c1, to two decimals.
Option-by-option analysis:
Option A: c1 ≈ 16.49
- Why this might be tempting: it is a large consumption in period 1, close to the level of period 1 income (y1 = 15) plus assets, suggesting a front-loaded consumption profile.
- Why it’s likely incorrect: given the positive but modest rate of return (r = 5%) and the fact that the agent must also consume in period 0 and period 2, along with β < 1, a markedly high c1 is hard to sustain across a......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
Question48 Which of the following does the Euler equation state? “The present value of government’s spending must equal the present value of receipts.” “Consumption is a function of permanent income.” “The real interest rate is the nominal interest rate minus inflation.” “The total supply of money is equal to nominal GDP divided by velocity.” “A consumer must be indifferent between consuming one more unit today or in the future.” ResetMaximum marks: 1 Flag question undefined
Question82 A widely used utility function in the economics literature is the constant rate of risk aversion utility function. It is given by: [math] Assume that an agent lives for three periods (t=0,1,2) and discounts future utility at rate β=0.8 (per period), and the degree of risk aversion [math] The agent is born with asset level a0 =5, and his/her labour market income is y0 =10, and y1 =15, for periods 0 and 1 respectively, the agent retires in the last period (no labour income in period 2). The interest rate in this economy is r=5%. Please answer the following questions based on the information displayed here. Choose the best option available. The optimal consumption at t=2 is approximately (2-decimal places) c2 = 16.49 The optimal consumption at t=2 is approximately (2-decimal places) c2 = 11.12 The optimal consumption at t=2 is approximately (2-decimal places) c2 = 9.34 The optimal consumption at t=2 is approximately (2-decimal places) c2 = 10.19 The optimal consumption at t=2 is approximately (2-decimal places) c2 = 16.67 ResetMaximum marks: 2 Flag question undefined
Question81 A widely used utility function in the economics literature is the constant rate of risk aversion utility function. It is given by: [math] Assume that an agent lives for three periods (t=0,1,2) and discounts future utility at rate β=0.8 (per period), and the degree of risk aversion [math] The agent is born with asset level a0 =5, and his/her labour market income is y0 =10, and y1 =15, for periods 0 and 1 respectively, the agent retires in the last period (no labour income in period 2). The interest rate in this economy is r=5%. Please answer the following questions based on the information displayed here. Choose the best option available. The optimal consumption at t=1 is approximately (2-decimal places) c1 = 11.12 The optimal consumption at t=1 is approximately (2-decimal places) c1 = 16.67 The optimal consumption at t=1 is approximately (2-decimal places) c1 = 9.34 The optimal consumption at t=1 is approximately (2-decimal places) c1 = 16.49 The optimal consumption at t=1 is approximately (2-decimal places) c1 = 10.19 ResetMaximum marks: 2 Flag question undefined
Question80 A widely used utility function in the economics literature is the constant rate of risk aversion utility function. It is given by: [math] Assume that an agent lives for three periods (t=0,1,2) and discounts future utility at rate β=0.8 (per period), and the degree of risk aversion [math] The agent is born with asset level a0 =5, and his/her labour market income is y0 =10, and y1 =15, for periods 0 and 1 respectively, the agent retires in the last period (no labour income in period 2). The interest rate in this economy is r=5%. Please answer the following questions based on the information displayed here. Choose the best option available. The optimal consumption at t=0 is approximately (2-decimal places) c0 = 16.67 The optimal consumption at t=0 is approximately (2-decimal places) c0 = 10.19 The optimal consumption at t=0 is approximately (2-decimal places) c0 = 9.34 The optimal consumption at t=0 is approximately (2-decimal places) c0 = 16.49 The optimal consumption at t=0 is approximately (2-decimal places) c0 = 11.12 ResetMaximum marks: 2 Flag question undefined
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!