题目
单项选择题
Question at position 1 ∫x+1(x2+2x)2dx=\int\frac{x+1}{\left(x^2+2x\right)^{^2}}dx=(x2+2x)36+C\frac{\left(x^2+2x\right)^{^3}}{6}+C(x2+2x)32+C\frac{\left(x^2+2x\right)^{^3}}{2}+C−(x2+2x)−1+C-\left(x^2+2x\right)^{^{-1}}+C(x2+2x)33+C\frac{\left(x^2+2x\right)^{^3}}{3}+C−12(x2+2x)−1+C-\frac{1}{2}\left(x^2+2x\right)^{^{-1}}+C
选项
A.(
𝑥
2
+
2
𝑥
)
3
6
+
𝐶
B.(
𝑥
2
+
2
𝑥
)
3
2
+
𝐶
C.−
(
𝑥
2
+
2
𝑥
)
−
1
+
𝐶
D.(
𝑥
2
+
2
𝑥
)
3
3
+
𝐶
E.−
1
2
(
𝑥
2
+
2
𝑥
)
−
1
+
𝐶
查看解析
标准答案
Please login to view
思路分析
We are evaluating the integral ∫ (x+1) / (x^2 + 2x)^2 dx, and we have several candidate antiderivatives to assess.
Option 1: ((x^2 + 2x)^3) / 6 + C
This would differentiate to (1/6) * 3 * (x^2 + 2x)^2 * (2x + 2) by the chain rule, which simplifies to (x^2 + 2x)^2 * (x + 1). This is not equal to (x+1) / (x^2 + 2x)^2, because the derivative yields a factor of (x^2 + 2x)^2 in ......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!