题目
多项填空题
∫9x dx=(coefficient)x(power)+c\displaystyle\int 9\sqrt{x} \ dx=\text{(coefficient)}x^{\text{(power)}} +c where coefficient = [Fill in the blank] and power = [Fill in the blank] (convert any fractional answers to decimal)
查看解析
标准答案
Please login to view
思路分析
Let’s parse the two integrals given and connect them to the requested form of an antiderivative.
First integral: ∫ 9x dx.
- In general, ∫ x^n dx = x^{n+1}/(n+1) + C for n ≠ -1. Here n = 1, so ∫ x dx = x^2/2.
- Multiply by the constant 9: ∫ 9x dx = 9 · (x^2/2) + C = (9/2) x^2 + C.
- This corresponds to a coefficient of 9/2 and a power of 2. Since the instruction s......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!